Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatology ; 57(2): 817-28, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22996371

ABSTRACT

UNLABELLED: Phosphorylation of the RelA subunit at serine 536 (RelA-P-Ser536) is important for hepatic myofibroblast survival and is mechanistically implicated in liver fibrosis. Here, we show that a cell-permeable competing peptide (P6) functions as a specific targeted inhibitor of RelA-P-Ser536 in vivo and exerts an antifibrogenic effect in two progressive liver disease models, but does not impair hepatic inflammation or innate immune responses after lipopolysaccharide challenge. Using kinase assays and western blotting, we confirm that P6 is a substrate for the inhibitory kappa B kinases (IKKs), IKKα and IKKß, and, in human hepatic myofibroblasts, P6 prevents RelA-P-Ser536, but does not affect IKK activation of IκBα. We demonstrate that RelA-P-Ser536 is a feature of human lung and skin fibroblasts, but not lung epithelial cells, in vitro and is present in sclerotic skin and diseased lungs of patients suffering from idiopathic pulmonary fibrosis. CONCLUSION: RelA-P-Ser536 may be a core fibrogenic regulator of fibroblast phenotype.


Subject(s)
Immunity, Innate/drug effects , Liver Cirrhosis/prevention & control , Peptide Fragments/pharmacology , Transcription Factor RelA/antagonists & inhibitors , Adult , Animals , Carbon Tetrachloride Poisoning/drug therapy , Fibroblasts/metabolism , Humans , I-kappa B Kinase/physiology , Lipopolysaccharides/pharmacology , Male , Mice , Peptide Fragments/metabolism , Phosphorylation , Serine , Transcription Factor RelA/metabolism , Transcription Factor RelA/pharmacology
2.
Am J Pathol ; 180(3): 929-939, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22210479

ABSTRACT

Cardiac remodeling and hypertrophy are the pathological consequences of cardiovascular disease and are correlated with its associated mortality. Activity of the transcription factor NF-κB is increased in the diseased heart; however, our present understanding of how the individual subunits contribute to cardiovascular disease is limited. We assign a new role for the c-Rel subunit as a stimulator of cardiac hypertrophy and fibrosis. We discovered that c-Rel-deficient mice have smaller hearts at birth, as well as during adulthood, and are protected from developing cardiac hypertrophy and fibrosis after chronic angiotensin infusion. Results of both gene expression and cross-linked chromatin immunoprecipitation assay analyses identified transcriptional activators of hypertrophy, myocyte enhancer family, Gata4, and Tbx proteins as Rel gene targets. We suggest that the p50 subunit could limit the prohypertrophic actions of c-Rel in the normal heart, because p50 overexpression in H9c2 cells repressed c-Rel levels and the absence of cardiac p50 was associated with increases in both c-Rel levels and cardiac hypertrophy. We report for the first time that c-Rel is highly expressed and confined to the nuclei of diseased adult human hearts but is restricted to the cytoplasm of normal cardiac tissues. We conclude that c-Rel-dependent signaling is critical for both cardiac remodeling and hypertrophy. Targeting its activities could offer a novel therapeutic strategy to limit the effects of cardiac disease.


Subject(s)
Cardiomegaly/etiology , Myocardium/pathology , NF-kappa B/physiology , Proto-Oncogene Proteins c-rel/physiology , Angiotensins/pharmacology , Animals , Blood Pressure/physiology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Fibrosis , Gene Deletion , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B p50 Subunit/metabolism , NF-kappa B p50 Subunit/physiology , Proto-Oncogene Proteins c-rel/deficiency , Proto-Oncogene Proteins c-rel/genetics , Signal Transduction/physiology , Ventricular Remodeling/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...