Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 119(1-4): 13-24, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-20889229

ABSTRACT

The stability of Mn oxides, and the potential for mobilization of associated trace metals, were assessed by simulating the onset of microbially-mediated reducing conditions in a continuous-flow column experiment. The column had previously been used for an in situ chemical oxidation (ISCO) experiment in which trichloroethylene was reacted with permanganate in the presence of aqueous trace metals, which produced Mn oxyhydroxides (MnO(x)) that sequestered the trace metals and coated the column sand. The column influent solution represented the incursion of ambient groundwater containing dissolved organic carbon (DOC) into an ISCO treatment zone. The influx of DOC-containing groundwater initiated a series of cation-exchange, surface-complexation and reductive-dissolution reactions that controlled the release of aqueous metals from the system. Peak concentrations in the effluent occurred in the order Na, Mo, Cr, Zn, K, Mn, Fe, Pb, Mg, Ni, Cu and Ca. Manganese release from the column was controlled by a combination of cation exchange, reductive dissolution and precipitation of rhodochrosite. The trend in Fe concentrations was similar to that of Mn, and also resulted from a combination of reductive dissolution and cation exchange. Cation exchange and/or surface-complexation were the primary mechanisms controlling Cu, Ni, Mo and Pb release to solution, while Zn and Cr concentrations did not display coherent trends. Although metal release from the treatment zone was evident in the data, concentrations of trace metals remained below 0.05 mg L(-1) with the exception of Mo which reached concentrations on the order of 1 mg L(-1). The establishment of anaerobic conditions in ISCO-treated aquifers may result in a prolonged flux of aqueous Mn(II), but with the exception of MoO(4)(2-), it is unlikely that trace metals sequestered with MnO(x) during ISCO will be released to the groundwater in elevated concentrations.


Subject(s)
Metals, Heavy/chemistry , Potassium Permanganate/chemistry , Tetrachloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Geologic Sediments/chemistry , Oxidation-Reduction
2.
Environ Sci Technol ; 44(15): 5934-9, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20617842

ABSTRACT

Batch and column experiments designed to simulate in situ chemical oxidation (ISCO) in a sand aquifer were conducted to create Mn-oxides (MnOx) by oxidation of trichloroethylene (TCE) with permanganate (MnO4-). Electron energy-loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) were used to quantify Mn valence in the oxides. The valence of Mn in the MnOx generated in near-source ISCO conditions was 2.2 and 2.3 when formed at low (<3) and neutral (6-7) pH conditions, respectively. There is no significant difference between these values. Valence was found to be sensitive to the preparation method and to aging. When formed in the presence of excess MnO4-, or aged for 3 months, Mn valence ranged from 2.5 to 3.6. Aging in a lower pH environment inhibited Mn oxidation. The EELS and XPS methods provided similar results, but there was a slight bias to higher values for XPS. This work demonstrates that MnO2(s) may not be the main product of MnO4- reaction with chlorinated solvents as is commonly assumed and that the efficiency of ISCO treatment may be greater than previously known.


Subject(s)
Manganese/chemistry , Oxides/chemistry , Potassium Permanganate/chemistry , Trichloroethylene/chemistry , Oxidation-Reduction , Oxides/chemical synthesis , Photoelectron Spectroscopy , Spectroscopy, Electron Energy-Loss
3.
J Contam Hydrol ; 88(1-2): 137-52, 2006 Nov 20.
Article in English | MEDLINE | ID: mdl-16876907

ABSTRACT

The potential for trace-metal contamination of aquifers as a side effect of In Situ Chemical Oxidation (ISCO) of chlorinated solvent contamination by KMnO(4) is investigated with column experiments. The experiments investigate metal mobility during in situ chemical oxidation of TCE by KMnO(4) under conditions where pH, flow rate, KMnO(4), TCE, and trace-metal concentrations were controlled. During ISCO, the injection of MnO(4) creates oxidizing conditions, and acidity released by the reactions causes a tendency toward low pH in aquifers. In order to evaluate the role of pH buffering on metal mobility, duplicate columns were constructed, one packed with pure silica sand, and one with a mixture of silica sand and calcite. Aqueous solutions of TCE and KMnO(4) (with 1 mg/L Cu, Pb, Zn, Mo, Ni, and Cr(VI)) were allowed to mix at the inlet to the columns. After the completion of the experiments, samples of Mn oxide were removed from the columns and analyzed by analytical scanning and transmission electron microscopy. In order to relate the results of the laboratory experiments to field settings, the analyses of Mn-oxide samples from the lab experiments were compared to samples of Mn oxide collected from a field-scale chemical-oxidation experiment that were also analyzed by analytical electron microscopy as well as time-of-flight secondary-ion mass spectroscopy. The pH ranged from 2.40 in the silica sand column to 6.25 in the calcite-containing column. The data indicate that aqueous Mo, Pb, Cu and Ni concentrations are attenuated almost completely within the columns. In contrast, Zn concentrations are not significantly attenuated and Cr(VI) is transported conservatively. The results indicate that within the range 2.40 to 6.25, metal mobility is not affected by pH. Comparison of analyses of Mn-oxide from the lab and field demonstrate that a variety of metals are sequestered from solution by Mn oxide.


Subject(s)
Metals, Heavy/chemistry , Potassium Permanganate/chemistry , Tetrachloroethylene/chemistry , Water Pollutants/chemistry , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...