Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Front Neurosci ; 17: 1143109, 2023.
Article in English | MEDLINE | ID: mdl-37207181

ABSTRACT

Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration: https://osf.io/7d4qe.

2.
Eur Surg Res ; 64(1): 27-36, 2023.
Article in English | MEDLINE | ID: mdl-35843208

ABSTRACT

INTRODUCTION: Sheep are frequently used in translational surgical orthopedic studies. Naturally, a good pain management is mandatory for animal welfare, although it is also important with regard to data quality. However, methods for adequate severity assessment, especially considering pain, are rather rare regarding large animal models. Therefore, in the present study, accompanying a surgical pilot study, telemetry and the Sheep Grimace Scale (SGS) were used in addition to clinical scoring for severity assessment after surgical interventions in sheep. METHODS: Telemetric devices were implanted in a first surgery subcutaneously into four German black-headed mutton ewes (4-5 years, 77-115 kg). After 3-4 weeks of recovery, sheep underwent tendon ablation of the left M. infraspinatus. Clinical scoring and video recordings for SGS analysis were performed after both surgeries, and the heart rate (HR) and general activity were monitored by telemetry. RESULTS: Immediately after surgery, clinical score and HR were slightly increased, and activity was decreased in individual sheep after both surgeries. The SGS mildly elevated directly after transmitter implantation but increased to higher levels after tendon ablation immediately after surgery and on the following day. CONCLUSION: In summary, SGS- and telemetry-derived data were suitable to detect postoperative pain in sheep with the potential to improve individual pain recognition and postoperative management, which consequently contributes to refinement.


Subject(s)
Orthopedic Procedures , Pain , Telemetry , Animals , Female , Models, Animal , Pilot Projects , Prostheses and Implants , Sheep , Orthopedic Procedures/veterinary
3.
Front Vet Sci ; 9: 930005, 2022.
Article in English | MEDLINE | ID: mdl-36277074

ABSTRACT

Several studies suggested an informative value of behavioral and grimace scale parameters for the detection of pain. However, the robustness and reliability of the parameters as well as the current extent of implementation are still largely unknown. In this study, we aimed to systematically analyze the current evidence-base of grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats. The following platforms were searched for relevant articles: PubMed, Embase via Ovid, and Web of Science. Only full peer-reviewed studies that describe the grimace scale, burrowing, and/or nest building as pain parameters in the post-surgical phase in mice and/or rats were included. Information about the study design, animal characteristics, intervention characteristics, and outcome measures was extracted from identified publications. In total, 74 papers were included in this review. The majority of studies have been conducted in young adult C57BL/6J mice and Sprague Dawley and Wistar rats. While there is an apparent lack of information about young animals, some studies that analyzed the grimace scale in aged rats were identified. The majority of studies focused on laparotomy-associated pain. Only limited information is available about other types of surgical interventions. While an impact of surgery and an influence of analgesia were rather consistently reported in studies focusing on grimace scales, the number of studies that assessed respective effects was rather low for nest building and burrowing. Moreover, controversial findings were evident for the impact of analgesics on post-surgical nest building activity. Regarding analgesia, a monotherapeutic approach was identified in the vast majority of studies with non-steroidal anti-inflammatory (NSAID) drugs and opioids being most commonly used. In conclusion, most evidence exists for grimace scales, which were more frequently used to assess post-surgical pain in rodents than the other behavioral parameters. However, our findings also point to relevant knowledge gaps concerning the post-surgical application in different strains, age levels, and following different surgical procedures. Future efforts are also necessary to directly compare the sensitivity and robustness of different readout parameters applied for the assessment of nest building and burrowing activities.

4.
Neuroscience ; 499: 142-151, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35878719

ABSTRACT

Synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein that binds levetiracetam and is involved in neurotransmission via an unknown mechanism. SV2A-immunoreactivity is reduced in animal models of epilepsy, and in postmortem hippocampi from patients with temporal lobe epilepsy. It is not known if other regions outside the hippocampus are affected in epilepsy, and whether SV2A expression is permanently reduced or regulated over time. In this study, we induced a generalized status epilepticus (SE) by systemic administration of lithium-pilocarpine to adult female rats. The brains from all animals experiencing SE were collected at different time points after the treatment. The radiotracer, [11C]-UCB-J, binds to SV2A with high affinity, and has been used for in vivo imaging as an a-proxy marker for synaptic density. Here we determined the level of tritiated UCB-J binding by semiquantitative autoradiography in the cerebral cortex, hippocampus, thalamus, and hypothalamus, and in cortical subregions. A prominent and highly significant reduction in SV2A binding capacity was observed over the first days after SE in the cerebral cortex and the hippocampus, but not in the thalamus and hypothalamus. The magnitude in reduction was larger and occurred earlier in the hippocampus and the piriform cortex, than in other cortical subregions. Interestingly, in all areas examined, the binding capacity returned to control levels 12 weeks after the SE comparable to the chronic epileptic phase. These data indicate that lithium-pilocarpine-induced epileptogenesis involves both loss and gain of synapses in the in a time-dependent manner.


Subject(s)
Epilepsy , Status Epilepticus , Animals , Brain/metabolism , Epilepsy/metabolism , Female , Hippocampus/metabolism , Lithium , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Pilocarpine , Rats , Status Epilepticus/chemically induced , Status Epilepticus/metabolism
5.
Neuropharmacology ; 203: 108884, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34785163

ABSTRACT

Epilepsy, one of the most common and most disabling neurological disorders, is characterized by spontaneous recurrent seizures, often associated with structural brain alterations and cognitive and psychiatric comorbidities. In about 30% of patients, the seizures are resistant to current treatments; so more effective treatments are urgently needed. Among the ∼30 clinically approved antiseizure drugs, retigabine (ezogabine) is the only drug that acts as a positive allosteric modulator (or opener) of voltage-gated Kv7 potassium channels, which is particularly interesting for some genetic forms of epilepsy. Here we describe a novel dual-mode-of-action compound, GRT-X (N-[(3-fluorophenyl)-methyl]-1-(2-methoxyethyl)-4-methyl-2-oxo-(7-trifluoromethyl)-1H-quinoline-3-carboxylic acid amide) that activates both Kv7 potassium channels and the mitochondrial translocator protein 18 kDa (TSPO), leading to increased synthesis of brain neurosteroids. TSPO activators are known to exert anti-inflammatory, neuroprotective, anxiolytic, and antidepressive effects, which, together with an antiseizure effect (mediated by Kv7 channels), would be highly relevant for the treatment of epilepsy. This prompted us to compare the antiseizure efficacy of retigabine and GRT-X in six mouse and rat models of epileptic seizures, including the 6-Hz model of difficult-to-treat focal seizures. Furthermore, the tolerability of the two compounds was compared in mice and rats. Potency comparisons were based on both doses and peak plasma concentrations. Overall, GRT-X was more effective than retigabine in three of the six seizure models used here, the most important difference being the high efficacy in the 6-Hz (32 mA) seizure model in mice. Based on drug plasma levels, GRT-X was at least 30 times more potent than retigabine in the latter model. These data indicate that GRT-X is a highly interesting novel anti-seizure drug with a unique (first-in-class) dual-mode mechanism of action.


Subject(s)
Anticonvulsants/therapeutic use , Carbamates/therapeutic use , Phenylenediamines/therapeutic use , Potassium Channels, Voltage-Gated/metabolism , Receptors, GABA/metabolism , Seizures/drug therapy , Seizures/metabolism , Animals , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , CHO Cells , Carbamates/pharmacology , Cricetulus , Dose-Response Relationship, Drug , Electroshock/adverse effects , Male , Mice , Mice, Inbred DBA , Mice, Transgenic , Phenylenediamines/pharmacology , Potassium Channels, Voltage-Gated/agonists , Rats , Rats, Sprague-Dawley , Rats, Wistar , Seizures/etiology , Treatment Outcome
6.
PLoS One ; 16(11): e0260482, 2021.
Article in English | MEDLINE | ID: mdl-34818362

ABSTRACT

PURPOSE: Alterations in brain glucose metabolism detected by 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG) positron emission tomography (PET) may serve as an early predictive biomarker and treatment target for epileptogenesis. Here, we aimed to investigate changes in cerebral glucose metabolism before induction of epileptogenesis, during epileptogenesis as well as during chronic epilepsy. As anesthesia is usually unavoidable for preclinical PET imaging and influences the distribution of the radiotracer, four different protocols were compared. PROCEDURES: We investigated 18F-FDG uptake phase in conscious rats followed by a static scan as well as dynamic scans under continuous isoflurane, medetomidine-midazolam-fentanyl (MMF), or propofol anesthesia. Furthermore, we applied different analysis approaches: atlas-based regional analysis, statistical parametric mapping, and kinetic analysis. RESULTS: At baseline and compared to uptake in conscious rats, isoflurane and propofol anesthesia resulted in decreased cortical 18F-FDG uptake while MMF anesthesia led to a globally decreased tracer uptake. During epileptogenesis, MMF anesthesia was clearly best distinctive for visualization of prominently increased glucometabolism in epilepsy-related brain areas. Kinetic modeling further increased sensitivity, particularly for continuous isoflurane anesthesia. During chronic epilepsy, hypometabolism affecting more or less the whole brain was detectable with all protocols. CONCLUSION: This study reveals evaluation of anesthesia protocols for preclinical 18F-FDG PET imaging as a critical step in the study design. Together with an appropriate data analysis workflow, the chosen anesthesia protocol may uncover otherwise concealed disease-associated regional glucometabolic changes.


Subject(s)
Brain/metabolism , Epilepsy/metabolism , Glucose/metabolism , Positron-Emission Tomography/methods , Anesthesia/methods , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/pharmacology , Animals , Brain/diagnostic imaging , Epilepsy/diagnostic imaging , Female , Fluorodeoxyglucose F18/metabolism , Glucose/analysis , Isoflurane/administration & dosage , Isoflurane/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Rats , Rats, Sprague-Dawley
7.
Metab Brain Dis ; 36(8): 2597-2602, 2021 12.
Article in English | MEDLINE | ID: mdl-34570340

ABSTRACT

Status epilepticus (SE) is a clinical emergency with high mortality. SE can trigger neuronal death or injury and alteration of neuronal networks resulting in long-term cognitive decline or epilepsy. Among the multiple factors contributing to this damage, imbalance between oxygen and glucose requirements and brain perfusion during SE has been proposed. Herein, we aimed to quantify by neuroimaging the spatiotemporal course of brain perfusion during and after lithium-pilocarpine-induced SE in rats. To this purpose, animals underwent 99mTc-HMPAO SPECT imaging at different time points during and after SE using a small animal SPECT/CT system. 99mTc-HMPAO regional uptake was normalized to the injected dose. In addition, voxel-based statistical parametric mapping was performed. SPECT imaging showed an increase of cortical perfusion before clinical seizure activity onset followed by regional hypo-perfusion starting with the first convulsive seizure and during SE. Twenty-four hours after SE, brain 99mTc-HMPAO uptake was widely decreased. Finally, chronic epileptic animals showed regionally decreased perfusion affecting hippocampus and cortical sub-regions. Despite elevated energy and oxygen requirements, brain hypo-perfusion is present during SE. Our results suggest that insufficient compensation of required blood flow might contribute to neuronal damage and neuroinflammation, and ultimately to chronic epilepsy generated by SE.


Subject(s)
Status Epilepticus , Tomography, Emission-Computed, Single-Photon , Animals , Brain/blood supply , Brain/diagnostic imaging , Cerebrovascular Circulation/physiology , Neuroimaging , Rats , Status Epilepticus/chemically induced , Status Epilepticus/diagnostic imaging , Technetium Tc 99m Exametazime , Tomography, Emission-Computed, Single-Photon/methods
8.
Geroscience ; 43(2): 673-690, 2021 04.
Article in English | MEDLINE | ID: mdl-33517527

ABSTRACT

Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration.


Subject(s)
Spermidine , Telomere , Aging , Animals , Autophagy , Dietary Supplements , Mice , Spermidine/pharmacology
10.
Neurotherapeutics ; 17(3): 1228-1238, 2020 07.
Article in English | MEDLINE | ID: mdl-31970667

ABSTRACT

Epileptogenesis-associated brain inflammation might be a promising target to prevent or attenuate epileptogenesis. Positron emission tomography (PET) imaging targeting the translocator protein (TSPO) was applied here to quantify effects of different dosing regimens of the anti-inflammatory drug minocycline during the latent phase in two rodent models of epileptogenesis. After induction of epileptogenesis by status epilepticus (SE), rats were treated with minocycline for 7 days (25 or 50 mg/kg) and mice for 5 or 10 days (50 or 100 mg/kg). All animals were subjected to scans at 1 and 2 weeks post-SE. Radiotracer distribution was analyzed and statistical parametric mapping (SPM) was performed, as well as histological analysis of astroglial activation and neuronal cell loss. Atlas-based analysis of [18F]GE180 PET in rats revealed a dose-dependent regional decrease of TSPO expression at 2 weeks post-SE. Results of SPM analysis depicted a treatment effect already at 1 week post-SE in rats treated with the higher minocycline dose. In mice, TSPO PET imaging did not reveal any treatment effects whereas histology identified only a treatment-related reduction in dispersion of dentate gyrus neurons. TSPO PET served as an auspicious tool for temporal monitoring and quantification of anti-inflammatory effects during epileptogenesis. Importantly, the findings underline the need to applying more than one animal model to avoid missing treatment effects. For future studies, the setup is ready to be applied in combination with seizure monitoring to investigate the relationship between individual early treatment response and disease outcome.


Subject(s)
Anti-Inflammatory Agents/metabolism , Carrier Proteins/metabolism , Epilepsy/metabolism , Minocycline/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Receptors, GABA-A/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Epilepsy/diagnostic imaging , Epilepsy/drug therapy , Female , Male , Mice , Minocycline/therapeutic use , Rats , Rats, Sprague-Dawley , Treatment Outcome
11.
J Cereb Blood Flow Metab ; 40(1): 204-213, 2020 01.
Article in English | MEDLINE | ID: mdl-30375913

ABSTRACT

Alterations in metabolism during epileptogenesis may be a therapy target. Recently, an increase in amino acid transport into the brain was proposed to play a role in epileptogenesis. We aimed to characterize alterations of substrate utilization during epileptogenesis and in chronic epilepsy. The lithium-pilocarpine post status epilepticus (SE) rat model was used. We performed longitudinal O-(2-[(18)F]fluoroethyl)-l-tyrosine (18F-FET) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and calculated 18F-FET volume of distribution (Vt) and 18F-FDG uptake. Correlation analyses were performed with translocator protein-PET defined neuroinflammation from previously acquired data. We found reduced 18F-FET Vt at 48 h after SE (amygdala: -30.2%, p = 0.014), whereas 18F-FDG showed increased glucose uptake 4 and 24 h after SE (hippocampus: + 43.6% and +42.5%, respectively; p < 0.001) returning to baseline levels thereafter. In chronic epileptic animals, we found a reduction in 18F-FET and 18F-FDG in the hippocampus. No correlation was found for 18F-FET or 18F-FDG to microglial activation at seven days post SE. Whereas metabolic alterations do not reflect higher metabolism associated to activated microglia, they might be partially driven by chronic neuronal loss. However, both metabolisms diverge during early epileptogenesis, pointing to amino acid turnover as a possible biomarker and/or therapeutic target for epileptogenesis.


Subject(s)
Brain Diseases, Metabolic/diagnostic imaging , Brain/metabolism , Epilepsy/metabolism , Positron-Emission Tomography/methods , Amino Acids/pharmacokinetics , Amygdala/diagnostic imaging , Amygdala/metabolism , Animals , Brain Diseases, Metabolic/etiology , Brain Diseases, Metabolic/metabolism , Chronic Disease , Disease Models, Animal , Fluorine Radioisotopes , Fluorodeoxyglucose F18 , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Rats , Substrate Specificity
12.
J Nucl Med ; 61(4): 590-596, 2020 04.
Article in English | MEDLINE | ID: mdl-31653713

ABSTRACT

Inflammation contributes to ventricular remodeling after myocardial ischemia, but its role in nonischemic heart failure is poorly understood. Local tissue inflammation is difficult to assess serially during pathogenesis. Although 18F-FDG accumulates in inflammatory leukocytes and thus may identify inflammation in the myocardial microenvironment, it remains unclear whether this imaging technique can isolate diffuse leukocytes in pressure-overload heart failure. We aimed to evaluate whether inflammation with 18F-FDG can be serially imaged in the early stages of pressure-overload-induced heart failure and to compare the time course with functional impairment assessed by cardiac MRI. Methods: C57Bl6/N mice underwent transverse aortic constriction (TAC) (n = 22), sham surgery (n = 12), or coronary ligation as an inflammation-positive control (n = 5). MRI assessed ventricular geometry and contractile function at 2 and 8 d after TAC. Immunostaining identified the extent of inflammatory leukocyte infiltration early in pressure overload. 18F-FDG PET scans were acquired at 3 and 7 d after TAC, under ketamine-xylazine anesthesia to suppress cardiomyocyte glucose uptake. Results: Pressure overload evoked rapid left ventricular dilation compared with sham (end-systolic volume, day 2: 40.6 ± 10.2 µL vs. 23.8 ± 1.7 µL, P < 0.001). Contractile function was similarly impaired (ejection fraction, day 2: 40.9% ± 9.7% vs. 59.2% ± 4.4%, P < 0.001). The severity of contractile impairment was proportional to histology-defined myocardial macrophage density on day 8 (r = -0.669, P = 0.010). PET imaging identified significantly higher left ventricular 18F-FDG accumulation in TAC mice than in sham mice on day 3 (10.5 ± 4.1 percentage injected dose [%ID]/g vs. 3.8 ± 0.9 %ID/g, P < 0.001) and on day 7 (7.8 ± 3.7 %ID/g vs. 3.0 ± 0.8 %ID/g, P = 0.006), though the efficiency of cardiomyocyte suppression was variable among TAC mice. The 18F-FDG signal correlated with ejection fraction (r = -0.75, P = 0.01) and ventricular volume (r = 0.75, P < 0.01). Western immunoblotting demonstrated a 60% elevation of myocardial glucose transporter 4 expression in the left ventricle at 8 d after TAC, indicating altered glucose metabolism. Conclusion: TAC induces rapid changes in left ventricular geometry and contractile function, with a parallel modest infiltration of inflammatory macrophages. Metabolic remodeling overshadows inflammatory leukocyte signal using 18F-FDG PET imaging. More selective inflammatory tracers are requisite to identify the diffuse local inflammation in pressure overload.


Subject(s)
Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Multimodal Imaging , Pressure/adverse effects , Ventricular Remodeling , Animals , Gene Expression Regulation , Glucose Transport Proteins, Facilitative/metabolism , Heart Failure/complications , Heart Failure/metabolism , Inflammation/diagnostic imaging , Male , Mice , Mice, Inbred C57BL , Myocardial Contraction , Positron-Emission Tomography , Ventricular Dysfunction, Left/complications
13.
Neurobiol Dis ; 134: 104664, 2020 02.
Article in English | MEDLINE | ID: mdl-31678583

ABSTRACT

Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed network-based approaches to prevent epileptogenesis. For proof of concept we combined two drugs (levetiracetam and topiramate) for which in silico analysis of drug-protein interaction networks indicated a synergistic effect on a large functional network of epilepsy-relevant proteins. Using the intrahippocampal kainate mouse model of temporal lobe epilepsy, the drug combination was administered during the latent period before onset of spontaneous recurrent seizures (SRS). When SRS were periodically recorded by video-EEG monitoring after termination of treatment, a significant decrease in incidence and frequency of SRS was determined, indicating antiepileptogenic efficacy. Such efficacy was not observed following single drug treatment. Furthermore, a combination of levetiracetam and phenobarbital, for which in silico analysis of drug-protein interaction networks did not indicate any significant drug-drug interaction, was not effective to modify development of epilepsy. Surprisingly, the promising antiepileptogenic effect of the levetiracetam/topiramate combination was obtained in the absence of any significant neuroprotective or anti-inflammatory effects as indicated by multimodal brain imaging and histopathology. High throughput RNA-sequencing (RNA-seq) of the ipsilateral hippocampus of mice treated with the levetiracetam/topiramate combination showed that several genes that have been linked previously to epileptogenesis, were significantly differentially expressed, providing interesting entry points for future mechanistic studies. Overall, we have discovered a novel combination treatment with promise for prevention of epilepsy.


Subject(s)
Anticonvulsants/pharmacology , Brain/drug effects , Drug Therapy, Combination/methods , Epilepsy, Temporal Lobe , Protein Interaction Mapping/methods , Animals , Levetiracetam/pharmacology , Male , Mice , Proof of Concept Study , Topiramate/pharmacology , Transcriptome/drug effects
14.
Epilepsia ; 60(11): 2325-2333, 2019 11.
Article in English | MEDLINE | ID: mdl-31571210

ABSTRACT

OBJECTIVE: Identification of patients at risk of developing epilepsy before the first spontaneous seizure may promote the development of preventive treatment providing opportunity to stop or slow down the disease. METHODS: As development of novel radiotracers and on-site setup of existing radiotracers is highly time-consuming and expensive, we used dual-centre in vitro autoradiography as an approach to characterize the potential of innovative radiotracers in the context of epilepsy development. Using brain slices from the same group of rats, we aimed to characterise the evolution of neuroinflammation and expression of inhibitory and excitatory neuroreceptors during epileptogenesis using translational positron emission tomography (PET) tracers; 18 F-flumazenil (18 F-FMZ; GABAA receptor), 18 F-FPEB (metabotropic glutamate receptor 5; mGluR5), 18 F-flutriciclamide (translocator protein; TSPO, microglia activation) and 18 F-deprenyl (monoamine oxidase B, astroglia activation). Autoradiography images from selected time points after pilocarpine-induced status epilepticus (SE; baseline, 24 and 48 hours, 5, 10 and 15 days and 6 and 12-14 weeks after SE) were normalized to a calibration curve, co-registered to an MRI-based 2D region-of-interest atlas, and activity concentration (Bq/mm2 ) was calculated. RESULTS: In epileptogenesis-associated brain regions, 18 F-FMZ and 18 F-FPEB showed an early decrease after SE. 18 F-FMZ decrease was maintained in the latent phase and further reduced in the chronic epileptic animals, while 18 F-FPEB signal recovered from day 10, reaching baseline levels in chronic epilepsy. 18 F-flutriciclamide showed an increase of activated microglia at 24 hours after SE, peaking at 5-15 days and decreasing during the chronic phase. On the other hand, 18 F-deprenyl autoradiography showed late astrogliosis, peaking in the chronic phase. SIGNIFICANCE: Autoradiography revealed different evolution of the selected targets during epileptogenesis. Our results suggest an advantage of combined imaging of inter-related targets like glutamate and GABAA receptors, or microglia and astrocyte activation, in order to identify important interactions, especially when using PET imaging for the evaluation of novel treatments.


Subject(s)
Epilepsy/metabolism , Inflammation Mediators/metabolism , Positron-Emission Tomography/methods , Receptors, GABA-A/metabolism , Receptors, Glutamate/metabolism , Animals , Biomarkers/metabolism , Epilepsy/diagnostic imaging , Female , Rats , Rats, Sprague-Dawley
15.
Neurobiol Dis ; 130: 104510, 2019 10.
Article in English | MEDLINE | ID: mdl-31212069

ABSTRACT

RATIONALE: Neuronal excitability and brain energy homeostasis are strongly interconnected and evidence suggests that both become altered during epileptogenesis. Pharmacologic modulation of cerebral glucose metabolism might therefore exert anti-epileptogenic effects. Here we provide mechanistic insights into effects of the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) on experimental epileptogenesis by longitudinal 2-deoxy-2[18F]fluoro-d-glucose positron emission tomography ([18F]FDG PET) and histology. METHODS: To imitate epileptogenesis, 6 Hz-corneal kindling was performed in male NMRI mice by twice daily electrical stimulation for 21 days. Kindling groups were treated i.p. 1 min after each stimulation with either 250 mg/kg 2-DG (CoKi_2-DG) or saline (CoKi_vehicle). A separate group of unstimulated mice was treated with 2-DG (2-DG_only). Dynamic 60-min [18F]FDG PET/CT scans were acquired at baseline and interictally on days 10 and 17 of kindling. [18F]FDG uptake (%injected dose/cc) was quantified in predefined regions of interest (ROI) using a MRI-based brain atlas, and kinetic modelling was performed to evaluate glucose net influx rate Ki and glucose metabolic rate MRGlu. Furthermore, statistical parametric mapping (SPM) analysis was applied on kinetic brain maps. For histological evaluation, brain sections were stained for glucose transporter 1 (GLUT1), astrocytes, microglia, as well as dying neurons. RESULTS: Post-stimulation 2-DG treatment attenuated early kindling progression, indicated by a reduction of fully-kindled mice, and a lower overall percentage of type five seizures. While 2-DG treatment alone led to globally increased Ki and MRGlu values at day 17, kindling progression per se did not influence glucose turnover. Kindling accompanied by 2-DG treatment, however, resulted in regionally elevated [18F]FDG uptake as well as increased Ki at days 10 and 17 compared both to baseline and to the 2-DG_only group. In hippocampus and thalamus, higher MRGlu values were found in the CoKi_2-DG vs. the CoKi_vehicle group at day 17. t maps resulting from SPM analysis generally confirmed the results of the ROI analysis, and additionally revealed increased MRGlu restricted to the ventral hippocampus when comparing the CoKi_2-DG and the 2-DG_only group both at days 10 and, more distinct, day 17. Immunohistochemical staining showed an attenuated kindling-induced regional activation of astrocytes in the CoKi_2-DG group. Interestingly, 2-DG treatment alone (and also in combination with kindling, but not kindling alone) led to increased microglial activation scores, whereas neither staining of GLUT1 nor of dying neurons revealed any differences to untreated controls. CONCLUSIONS: Post-stimulation treatment with 2-DG exerts disease-modifying effects in the mouse 6 Hz corneal kindling model. The observed local increase in glucose supply and turnover, the alleviation of astroglial activation and the activation of microglia by 2-DG might contribute separately or in combination to its positive interference with epileptogenesis.


Subject(s)
Cerebral Cortex/metabolism , Deoxyglucose/therapeutic use , Epilepsy/drug therapy , Gliosis/drug therapy , Glucose/metabolism , Microglia/drug effects , Animals , Deoxyglucose/pharmacology , Disease Models, Animal , Electric Stimulation , Epilepsy/metabolism , Gliosis/metabolism , Kindling, Neurologic/drug effects , Male , Mice , Microglia/metabolism , Positron Emission Tomography Computed Tomography
16.
eNeuro ; 5(3)2018.
Article in English | MEDLINE | ID: mdl-29854942

ABSTRACT

Increased permeability of the blood-brain barrier (BBB) following cerebral injury results in regional extravasation of plasma proteins and can critically contribute to the pathogenesis of epilepsy. Here, we comprehensively explore the spatiotemporal evolution of a main extravasation component, albumin, and illuminate associated responses of the neurovascular unit (NVU) contributing to early epileptogenic neuropathology. We applied translational in vivo MR imaging and complementary immunohistochemical analyses in the widely used rat pilocarpine post-status epilepticus (SE) model. The observed rapid BBB leakage affected major epileptogenesis-associated brain regions, peaked between 1 and 2 d post-SE, and rapidly declined thereafter, accompanied by cerebral edema generally following the same time course. At peak of BBB leakage, serum albumin colocalized with NVU constituents, such as vascular components, neurons, and brain immune cells. Surprisingly, astroglial markers did not colocalize with albumin, and aquaporin-4 (AQP4) was clearly reduced in areas of leaky BBB, indicating a severe disturbance of astrocyte-mediated endothelial-neuronal coupling. In addition, a distinct adaptive reorganization process of the NVU vasculature apparently takes place at sites of albumin presence, substantiated by reduced immunoreactivity of endothelial and changes in vascular basement membrane markers. Taken together, degenerative events at the level of the NVU, affecting vessels, astrocytes, and neurons, seem to outweigh reconstructive processes. Considering the rapidly occurring BBB leakage and subsequent impairment of the NVU, our data support the necessity of a prompt BBB-restoring treatment as one component of rational therapeutic intervention to prevent epileptogenesis and the development of other detrimental sequelae of SE.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Brain/metabolism , Status Epilepticus/metabolism , Albumins/metabolism , Animals , Astrocytes/metabolism , Brain/pathology , Brain/physiopathology , Disease Models, Animal , Female , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Neurons/metabolism , Pilocarpine , Rats, Sprague-Dawley , Serum Albumin/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/pathology
17.
Epilepsia ; 59(3): 617-626, 2018 03.
Article in English | MEDLINE | ID: mdl-29364511

ABSTRACT

OBJECTIVE: Accumulating evidence suggests that brain inflammation, elicited by epileptogenic insults, is involved in epilepsy development. Noninvasive nuclear imaging of brain inflammation in animal models of epileptogenesis represents a diagnostic in vivo approach with potential for direct translation into the clinic. Here, we investigated up-regulation of the translocator protein (TSPO) indicative of microglial activation by serial [18 F]GE180 positron emission tomographic (PET) imaging in a mouse model of temporal lobe epilepsy. METHODS: As epileptogenic insult, a status epilepticus (SE) was induced in mice by intrahippocampal injection of kainate. Post-SE mice injected with kainate and sham-injected mice were subjected to [18 F]GE180 PET scans before SE and at 2 days, 5-7 days, 2 weeks, 3 weeks, 7 weeks, and 14 weeks postinsult. For data evaluation, brain regions ipsilateral and contralateral to the injection site were outlined by coregistration with a standard mouse brain atlas, and percentage of injected dose per cubic centimeter was calculated. In addition, a statistical parametric mapping analysis, comparing post-SE mice to baseline, sham mice to baseline, and post-SE to sham mice was performed. RESULTS: Following SE, elevations in [18 F]GE180 uptake were most prominent in the ipsilateral hippocampus, occurring between 2 days and at least 7 weeks after SE, with a peak at 5-7 days after SE. In the contralateral hippocampus and other epilepsy-associated brain regions, increased tracer uptake was observed with a similar time profile but to a lesser extent. Moderate enhancement of tracer uptake was also evident in mice after sham surgery. SIGNIFICANCE: TSPO in vivo imaging reliably detects brain inflammation during epileptogenesis. These inflammatory processes most prominently affect the hippocampus ipsilateral to the injection site. Inflammation induced by the traumatic insult associated with surgery synergistically contributes to total brain inflammation and may also contribute to epileptogenesis. The revealed time course of neuroinflammation will help to identify appropriate time points for anti-inflammatory, potentially antiepileptogenic treatment.


Subject(s)
Carbazoles , Disease Models, Animal , Epilepsy, Temporal Lobe/diagnostic imaging , Fluorine Radioisotopes , Hippocampus/diagnostic imaging , Positron-Emission Tomography/methods , Animals , Carbazoles/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/metabolism , Fluorine Radioisotopes/metabolism , Hippocampus/metabolism , Kainic Acid/toxicity , Male , Mice
18.
Sci Rep ; 7(1): 12191, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28939854

ABSTRACT

Epilepsy may arise following acute brain insults, but no treatments exist that prevent epilepsy in patients at risk. Here we examined whether a combination of two glutamate receptor antagonists, NBQX and ifenprodil, acting at different receptor subtypes, exerts antiepileptogenic effects in the intrahippocampal kainate mouse model of epilepsy. These drugs were administered over 5 days following kainate. Spontaneous seizures were recorded by video/EEG at different intervals up to 3 months. Initial trials showed that drug treatment during the latent period led to higher mortality than treatment after onset of epilepsy, and further, that combined therapy with both drugs caused higher mortality at doses that appear safe when used singly. We therefore refined the combined-drug protocol, using lower doses. Two weeks after kainate, significantly less mice of the NBQX/ifenprodil group exhibited electroclinical seizures compared to vehicle controls, but this effect was lost at subsequent weeks. The disease modifying effect of the treatment was associated with a transient prevention of granule cell dispersion and less neuronal degeneration in the dentate hilus. These data substantiate the involvement of altered glutamatergic transmission in the early phase of epileptogenesis. Longer treatment with NBQX and ifenprodil may shed further light on the apparent temporal relationship between dentate gyrus reorganization and development of spontaneous seizures.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Anticonvulsants/pharmacology , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Dentate Gyrus/pathology , Disease Models, Animal , Drug Administration Schedule , Drug Therapy, Combination , Electroencephalography , Epilepsy/chemically induced , Epilepsy/diagnosis , Epilepsy/pathology , Humans , Kainic Acid/toxicity , Male , Mice , Neurons/drug effects , Neurons/pathology , Piperidines/pharmacology , Piperidines/therapeutic use , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Time Factors , Treatment Outcome
19.
PLoS Negl Trop Dis ; 11(5): e0005594, 2017 May.
Article in English | MEDLINE | ID: mdl-28481889

ABSTRACT

BACKGROUND: Neuroinvasive larvae of the worldwide occurring zoonotic roundworms Toxocara canis and T. cati may induce neurotoxocarosis (NT) in humans, provoking a variety of symptoms including cognitive deficits as well as neurological dysfunctions. An association with neuropsychological disorders has been discussed. Similar symptoms have been described in T. canis-infected mice, whereas data on T. cati-induced NT are rare. Therefore, it was aimed to obtain insights into the impact on neurobehaviour as well as progression of neurological symptoms and behavioural alterations during the course of NT directly comparing T. canis- and T. cati-infected mice as models for human NT. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 mice were orally infected with 2000 embryonated T. canis or T. cati eggs, respectively, the control group received tap water. Mice were screened weekly for neurobehavioural alterations and memory function starting one day prior infection until 97 days post infection (pi; T. canis-infection) and day 118 pi (T. cati-infection, uninfected control). Mostly motoric and neurological parameters were affected in T. canis-infected mice starting day 20 pi with severe progression accompanied by stereotypical circling. In contrast, T. cati-infected mice mostly showed reduced response to sudden sound stimulus (indicator for excitability) and flight behaviour starting day 6 pi. Interestingly, enhanced grooming behaviour was observed exclusively in T. cati-infected mice, indicating a possible role of neurotransmitter dysregulation. Reduced exploratory behaviour and memory impairment was observed in both infection groups with delayed onset and less severe progression in T. cati- compared to T. canis-infected mice. CONCLUSIONS/SIGNIFICANCE: Results highlight the need to consider T. cati beside T. canis as causative agent of human NT. Findings provide valuable hints towards differences in key regulatory mechanisms during T. canis- and T. cati-induced NT, contributing to a comprehensive picture and consequently a broader understanding of NT, which will aid in developing strategies towards prevention in addition to novel diagnostic and therapeutic approaches.


Subject(s)
Nervous System Diseases/etiology , Nervous System Diseases/pathology , Toxocara/pathogenicity , Toxocariasis/complications , Animals , Disease Models, Animal , Female , Mice, Inbred C57BL
20.
Front Vet Sci ; 4: 218, 2017.
Article in English | MEDLINE | ID: mdl-29326952

ABSTRACT

Non-invasive nuclear imaging by positron emission tomography and single photon emission computed tomography has significantly contributed to epileptic focus localization in human neurology for several decades now. Offering functional insight into brain alterations, it is also of particular relevance for epilepsy research. Access to these techniques for veterinary medicine is becoming more and more relevant and has already resulted in first studies in canine patients. In view of the substantial proportion of drug-refractory epileptic dogs and cats, image-guided epileptic focus localization will be a prerequisite for selection of patients for surgical focus resection. Moreover, radiotracer imaging holds potential for a better understanding of the pathophysiology of underlying epilepsy syndromes as well as to forecast disease risk after epileptogenic brain insults. Importantly, recent advances in epilepsy research demonstrate the suitability and value of several novel radiotracers for non-invasive assessment of neuroinflammation, blood-brain barrier alterations, and neurotransmitter systems. It is desirable that veterinary epilepsy patients will also benefit from these promising developments in the medium term. This paper reviews the current use of radiotracer imaging in the veterinary epilepsy patient and suggests possible future directions for the technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...