Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 22(12): 5033-5047, 2020 12.
Article in English | MEDLINE | ID: mdl-32452153

ABSTRACT

Members of the Borrelia burgdorferi sensu lato (s.l.) species complex are known to cause human Lyme borreliosis. Because of longevity of some reservoir hosts and the Ixodes tick vectors' life cycle, long-term studies are required to better understand species and population dynamics of these bacteria in their natural habitats. Ticks were collected between 1999 and 2010 in three ecologically different habitats in Latvia. We used multilocus sequence typing utilizing eight chromosomally located housekeeping genes to obtain information about species and population fluctuations and/or stability of B. burgdorferi s.l. in these habitats. The average prevalence over all years was 18.9%. From initial high-infection prevalences of 25.5%, 33.1% and 31.8%, from 2002 onwards the infection rates steadily decreased to 7.3%. Borrelia afzelii and Borrelia garinii were the most commonly found genospecies but striking local differences were obvious. In one habitat, a significant shift from rodent-associated to bird-associated Borrelia species was noted whilst in the other habitats, Borrelia species composition was relatively stable over time. Sequence types (STs) showed a random spatial and temporal distribution. These results demonstrated that there are temporal regional changes and extrapolations from one habitat to the next are not possible.


Subject(s)
Borrelia burgdorferi Group/isolation & purification , Borrelia burgdorferi/isolation & purification , Ixodes/microbiology , Lyme Disease/epidemiology , Animals , Borrelia burgdorferi/genetics , Borrelia burgdorferi Group/genetics , Ecosystem , Humans , Latvia/epidemiology , Longitudinal Studies , Lyme Disease/microbiology , Multilocus Sequence Typing , Prevalence
2.
High Throughput ; 7(4)2018 Oct 16.
Article in English | MEDLINE | ID: mdl-30332776

ABSTRACT

Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...