Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 10(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34945540

ABSTRACT

Seaweeds are potentially sustainable crops and are receiving significant interest because of their rich bioactive compound content; including fatty acids, polyphenols, carotenoids, and complex polysaccharides. However, there is little information on the in vivo effects on gut health of the polysaccharides and their low-molecular-weight derivatives. Herein, we describe the first investigation into the prebiotic potential of low-molecular-weight polysaccharides (LMWPs) derived from alginate and agar in order to validate their in vivo efficacy. We conducted a randomized; placebo-controlled trial testing the impact of alginate and agar LWMPs on faecal weight and other markers of gut health and on composition of gut microbiota. We show that these LMWPs led to significantly increased faecal bulk (20-30%). Analysis of gut microbiome composition by sequencing indicated no significant changes attributable to treatment at the phylum and family level, although FISH analysis showed an increase in Faecalibacterium prausnitzii in subjects consuming agar LMWP. Sequence analysis of gut bacteria corroborated with the FISH data, indicating that alginate and agar LWMPs do not alter human gut microbiome health markers. Crucially, our findings suggest an urgent need for robust and rigorous human in vivo testing-in particular, using refined seaweed extracts.

2.
Biochem J ; 423(1): 119-28, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19619129

ABSTRACT

Flagellin acting via TLR5 (Toll-like receptor 5) is a key regulator of the host response to the gut microbial flora in both health and disease. The present study has investigated regulation of flagellin-TLR5 signalling in human colonocytes (HT29-19A) by IFNgamma (interferon-gamma), a cytokine released early in the inflammatory process which has multiple effects on gut epithelial function that may facilitate abnormal responses to enteric bacteria. Flagellin induced a dose-dependent secretion of chemokines CXCL8 and CCL2 in the human colonocyte line, HT29-19A. Exposure to IFNgamma did not induce chemokine secretion, but markedly potentiated responses to flagellin, increasing CXL8 gene expression and protein secretion by approx. 4-fold. Potentiation by IFNgamma was independent of changes in TLR5 and was associated with a rapid, sustained increase in expression of the downstream adaptor molecule MyD88 (myeloid differentiation factor 88). Knockdown of MyD88 expression using siRNA (small interfering RNA) abolished flagellin-dependent CXCL8 secretion and the potentiating effect of IFNgamma. Exposure of non-transformed mouse and human colonocytes to IFNgamma also increased MyD88 expression. STAT (signal transducer and activator of transcription) 1 knockdown and use of the broad-spectrum JAK (Janus kinase)-STAT inhibitor AG490 had no effect on IFNgamma-mediated up-regulation of MyD88. The findings of the present study suggest that IFNgamma sensitizes colonic epithelial cells to bacterial flagellin via a largely STAT-independent up-regulation of MyD88 expression leading to increased secretion of immunomodulatory factors. These results indicate that epithelial responses to flagellin are potentiated by IFNgamma, most likely mediated by increased MyD88 expression. The present study adds to our understanding of the spectrum of effects of this cytokine on gut epithelium that may contribute to bacterial-driven inflammation in the gut.


Subject(s)
Flagellin/pharmacology , Interferon-gamma/pharmacology , Intestinal Mucosa/drug effects , Myeloid Differentiation Factor 88/genetics , STAT Transcription Factors/physiology , Animals , Chemokine CCL2/metabolism , Drug Synergism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/physiology , Gene Expression Regulation/drug effects , HT29 Cells , Humans , Interleukin-8/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology , Male , Mice , Myeloid Differentiation Factor 88/antagonists & inhibitors , Myeloid Differentiation Factor 88/metabolism , RNA, Small Interfering/pharmacology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...