Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2403694, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923816

ABSTRACT

Li-ion batteries based on high specific capacity LixSiO-Graphite anodes and LiNi0.89Co0.05 Mn0.05Al0.01O2 (NCMA) cathodes may have numerous practical applications owing to high energy density without a necessary compromise on safety. SiO, which is an attractive Li insertion anode material, offers more cycling stability than Si and a higher capacity than graphite. Therefore, a new trend has emerged for developing composite C-Si anodes, possessing the excellent cyclability of graphite coupled with high capacity SiO. The composite structure described herein prevents the volume expansion of SiO and maintains the structural integrity during prolonged cycling. However, graphite electrodes suffer from exfoliation in propylene carbonate (PC) based electrolyte solutions, which avoids well known safety benefits related to a possible use of PC based electrolyte solutions in all kinds of Li batteries. Herein, it is reported that trifluoro propylene carbonate (TFPC) is compatible with graphite anodes. New electrolyte formulations are developed and tested containing fluorinated co-solvents and compared the performance of several electrolyte solutions, including conventional alkyl carbonates-based solutions in full Li-ion cells, which included LixSiO-Graphite anodes and LiNi0.89Co0.05Mn0.05Al0.01O2 (NCMA) cathodes. Cells with new electrolyte solutions developed herein demonstrated nearly twice capacity retention in prolonged cycling experiments compared to similar reference cells containing conventional electrolyte solutions.

2.
Sci Rep ; 9(1): 11194, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31371785

ABSTRACT

A new multisensor (i.e. resistive and magnetic) CrI3-WTe2 heterostructure (HS) to detect the toxic gases BrF3 and COCl2 (Phosgene) has been theoretically studied in our present investigation. The HS has demonstrated sensitivity towards both the gases by varying its electronic and magnetic properties when gas molecule interacts with the HS. Fast recovery time (<0.14 fs) under UV radiation has been observed. We have considered two configurations of BrF3 adsorbed HS; (1) when F ion interacts with HS (C1) and (2) when Br ion interacts with HS (C2). In C1 case the adsorption energy Ead is observed to be -0.66 eV while in C2 it is -0.95 eV. On the other hand in case of COCl2 Ead is found to be -0.42 eV. Magnetic moments of atoms are also found to vary upon gas adsorption indicates the suitability of the HS as a magnetic gas sensor. Our observations suggest the suitability of CrI3-WTe2 HS to respond detection of the toxic gases like BrF3 and COCl2.

3.
Phys Chem Chem Phys ; 21(8): 4633-4640, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30747176

ABSTRACT

Using first principles density functional theory, we have studied the interaction mechanism of NO2 and SO2 gas molecules on an MoB2 monolayer, for gas sensing applications. The selectivity for a particular gas by the sensor has been analyzed through electronic structure calculations and adsorption studies. The calculations have been performed by considering the fact that the MoB2 monolayer as a sensing material encounters a change in its electrical properties, when gas molecules with different orientations get adsorbed on the surface. From the density of states study, we find better selectivity for NO2 as compared to SO2, as the latter leaves the electronic structure of the sensing material unaffected. Further, the adsorption curves support the above fact as the larger value of adsorption energy (Ead ∼ -1 eV) for NO2 indicates stronger adsorption. The chemisorptive nature for NO2, in contrast with the relatively weaker physisorption for SO2, additionally supports the fact that NO2 gas has a better perspective for MoB2 sensor application. Charge density plots for each case are in good agreement with the above conclusions. The faster recovery time attributes the MoB2 monolayer better as a sensor material for NO2 interaction.

4.
Sci Rep ; 8(1): 14444, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30262827

ABSTRACT

We have performed the density functional theory calculations on heterostructure (HS) of MoS2 and MoB2 monolayers. The aim of this study is to assess the influence of MoB2 on electron transport of adjacent MoS2 layer. In present investigation we predict that the electronic properties of MoS2 monolayer is influenced by 4d-states of Mo in MoB2 monolayer. Whereas, the B atoms of MoB2 and S atoms of MoS2 exhibit overlapping of intermediate atomic orbitals thereby collectively construct the interfacial electronic structure observed to be metallic in nature. From charge density calculations, we have also determine that the charge transfer is taking place at the interface via B-2p and S-3p states. The bonds at the interface are found to be metallic which is also confirmed by adsorption analysis. Thermoelectric performance of this HS is found be in good agreement with available literature. Low Seebeck coefficient and high electrical conductivity further confirms the existence of metallic state of the HS.

5.
Sci Rep ; 8(1): 714, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335594

ABSTRACT

A variety of theoretical and experimental works have reported several potential applications of MoS2 monolayer based heterostructures (HSs) such as light emitting diodes, photodetectors and field effect transistors etc. In the present work, we have theoretically performed as a model case study, MoS2 monolayer deposited over insulating SrTiO3 (001) to study the band alignment at TiO2 termination. The interfacial characteristics are found to be highly dependent on the interface termination. With an insulating oxide material, a significant band gap (0.85eV) is found in MoS2/TiO2 interface heterostructure (HS). A unique electronic band profile with an indirect band gap (0.67eV) is observed in MoS2 monolayer when confined in a cubic environment of SrTiO3 (STO). Adsorption analysis showed the chemisorption of MoS2 on the surface of STO substrate with TiO2 termination which is justified by the charge density calculations that shows the existence of covalent bonding at the interface. The fabrication of HS of such materials paves the path for developing the unprecedented 2D materials with exciting properties such as semiconducting devices, thermoelectric and optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...