Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(26): 29069, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973866

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.1c06890.].

2.
Biol Trace Elem Res ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991669

ABSTRACT

The present study evaluated the effects of dietary selenium yeast (SY) on the brain, CSF, and blood of 30 crossbreed goats (5-6 months of age) of both sexes. After the acclimatization of 2 weeks, they were randomly separated into two groups (n = 15) named C and SY groups. The C group received only a basal diet, while SY received a basal diet along with 0.3 mg/kg/diet of SY (Sel-Plex®) in total 0.035 mg/kg/diet of SY for 10 weeks. Se concentration (µg /g dry weight) in 15 different parts of the goat's brain was accessed, and results showed that the highest concentration was found in the occipital cerebrum (322.0 ± 6.146), whereas the lowest concentration was found in the midbrain (10.33 ± 0.232). Besides, the oxidative biomarkers including GSH (12.13 ± 0.191), GSH-Px (206.7 ± 2.362), GST (23.80 ± 0.279), CAT (14.80 ± 0.279), and SOD (152.5 ± 9.540) were increased in SY as compared to GSH (8.200 ± 0.144), GSH-Px (112.9 ± 1.183), GST (18.93 ± 0.284), CAT (12.53 ± 0.215), and SOD (109.0 ± 1.966) of C. The level of cholesterol was also significantly decreased in the serum of the SY group (84.87 ± 0.960) as compared to C (110.5 ± 0.592). In addition, the cholesterol level in CSF decreased significantly in SY (0.3567 ± 0.016) as compared to C (0.509 ± 0.009). The current research suggests that SY supplementation has improved the brain's antioxidant status, blood biochemistry, and cholesterol levels in both serum and CSF of goats.

3.
Animals (Basel) ; 13(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570269

ABSTRACT

Selenium is an essential compound which can influence the fertility of boars by a greater margin. In past decades, research was mainly focused on a bioavailability of various selenium forms and the effect on semen quality. Recently, nanotechnology has expanded the possibilities of selenium supplementation research. Twenty-one Duroc boars (three groups with seven boars each) were included in this experiment with the first group being a control group with no selenium supplementation, and the second group being supplemented with 0.3 mg Se/kg of selenium in inorganic form of Na2SeO3. The third group was supplemented with selenium nanoparticles (100 nm) at the same dose as that of the second group. The experiment lasted for 126 days (three spermatogenesis cycles of boars) and the antioxidant parameters of boar semen were analysed at 42, 84 and 126 days, respectively. The antioxidant parameters (DPPH, FRAP, DMPD, GSH, GSSG) were not influenced by both Se2NO3 and selenium nanoparticle supplementation during this experiment. At the end of the monitored period, significantly higher (p < 0.004) antioxidant readings were observed by using the ABTS method but not the DPPH, DMPD and FRAP methods on the supplemented groups compared to the control. Moreover, selenium-nanoparticle-supplemented groups showed elevated glutathione peroxidase activity in the seminal fluid (p < 0.008). However, the selenium nanoparticle supplementation has not shown an improving effect on sperm quality. This could be considered as a safe alternative to inorganic selenium as well as having a potential to enhance the antioxidant properties of the semen of boars.

4.
Front Vet Sci ; 10: 1086985, 2023.
Article in English | MEDLINE | ID: mdl-36814466

ABSTRACT

Yaks play an important role in the livelihood of the people of the Qinghai-Tibet Plateau (QTP) and contribute significantly to the economy of the different countries in the region. Yaks are commonly raised at high altitudes of ~ 3,000-5,400 m above sea level. They provide many important products, namely, milk, meat, fur, and manure, as well as social status, etc. Yaks were domesticated from wild yaks and are present in the remote mountains of the QTP region. In the summer season, when a higher quantity of pasture is available in the mountain region, yaks use their long tongues to graze the pasture and spend ~ 30-80% of their daytime grazing. The remaining time is spent walking, resting, and doing other activities. In the winter season, due to heavy snowfall in the mountains, pasture is scarce, and yaks face feeding issues due to pasture scarcity. Hence, the normal body weight of yaks is affected and growth retardation occurs, which consequently affects their production performance. In this review article, we have discussed the domestication of yaks, the feeding pattern of yaks, the difference between the normal and growth-retarded yaks, and also their microbial community and their influences. In addition, blood biochemistry, the compositions of the yaks' milk and meat, and reproduction are reported herein. Evidence suggested that yaks play an important role in the daily life of the people living on the QTP, who consume milk, meat, fur, use manure for fuel and land fertilizer purposes, and use the animals for transportation. Yaks' close association with the people's well-being and livelihood has been significant.

5.
Vet Med Sci ; 8(6): 2655-2661, 2022 11.
Article in English | MEDLINE | ID: mdl-36253877

ABSTRACT

BACKGROUND: Mastitis in dairy cattle is a highly prevalent infectious disease, caused by various pathogens, mainly Staphylococcu aureus and Escherichia Coli, considerable economic loss worldwide. OBJECTIVES: The aim of this study was to evaluate the in vitro activity of Herbal plants used against S. aureus and E. coli bacteria which are the causative agents of mastitis. METHODS: Therefore, in this study we investigate the antimicrobial effect of plant to evaluate the in vitro antibacterial activity of squaw mint (Mentha pulegium L., Lamiaceae family), catnip (Nepeta cataria L., Lamiaceae), lemon balm (Melissa officinalis L., Lamiaceae), for mastitis treatment. Solutions prepared in fixed oils, against S. aureus and E. coli bacteria which are the main agents of mastitis. Isolation and antibiotic susceptibility analyses of milk samples taken from 100 subclinical mastitis dairy cows were performed. The antibacterial properties of the solutions were analysed by a disk diffusion method. RESULTS: In the bacterial isolation, S. aureus was determined 97.7% and E. coli 53.5% positive of cows with mastitis. Antibacterial susceptibility test of the Lemon balm extract and essential oil showed maximum zone of inhibition against S. aureus 30 µl (23 mm), followed by 20 µl (19 mm), E. coli (19 mm) and 10 µl (5-7 mm), of the same extract against the Gram-positive bacteria. The ethanol extracts show the similar activity against the Gram-negative bacteria at 30, 20, and 10 µl (18-20 mm). Followed by S. aureus, when the zone areas for the susceptible solutions (Lemon balm, and essential oil) and the control group were compared, determined that there was little difference between for S. aureus and E. coli. CONCLUSIONS: This study hence indicated that in vitro cultured plantlets of lemon balm and peppermint oil can be used as the alternative method for production of mastitis and cheap source its precursor with antimicrobial activities.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Oils, Volatile , Animals , Cattle , Female , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Staphylococcus aureus , Escherichia coli , Mastitis, Bovine/drug therapy , Mastitis, Bovine/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
6.
EXCLI J ; 21: 948-966, 2022.
Article in English | MEDLINE | ID: mdl-36172072

ABSTRACT

Selenium (Se) is an element that has a pro-health effect on humans and animals. However, both the deficiency of this element and its excess may prove harmful to the body depending on the chemical form of the selenium, the duration of supplementation, and the human health condition. Many data indicate insufficient coverage of the demand for selenium in humans and animals due to its low content in soils and food products. A balance in the physiological process of the body can be achieved via the proper percentage of organically active minerals in the feed of animals as well as human beings. Selenium is a trace mineral of great importance to the body, required for the maintenance of a variety of its processes; primarily, selenium maintains immune endocrine, metabolic, and cellular homeostasis. Recently, this element has been emerging as a most promising treatment option for various disorders. Therefore, research based on Se has been increasing in recent times. The present review is designed to provide up-to-date information related to Se and its different forms as well as its effects on health.

7.
Molecules ; 27(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080362

ABSTRACT

Inhibin is a molecule that belongs to peptide hormones and is excreted through pituitary gonadotropins stimulation action on the granulosa cells of the ovaries. However, the differential regulation of inhibin and follicle-stimulating hormone (FSH) on granulosa cell tumor growth in mice inhibin-deficient females is not yet well understood. The objective of this study was to evaluate the role of inhibin and FSH on the granulosa cells of ovarian follicles at the premature antral stage. This study stimulated immature wild-type (WT) and Inhibin-α knockout (Inha-/-) female mice with human chorionic gonadotropin (hCG) and examined hCG-induced gene expression changes in granulosa cells. Also, screening of differentially expressed genes (DEGs) was performed in the two groups under study. In addition, related modules to external traits and key gene drivers were determined through Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. The results identified a number of 1074 and 931 DEGs and 343 overlapping DEGs (ODEGs) were shared in the two groups. Some 341 ODEGs had high relevance and consistent expression direction, with a significant correlation coefficient (r2 = 0.9145). Additionally, the gene co-expression network of selected 153 genes showed 122 nodes enriched to 21 GO biological processes (BP) and reproduction and 3 genes related to genomic pathways. By using principal component analysis (PCA), the 14 genes in the regulatory network were fixed and the cumulative proportion of fitted top three principal components was 94.64%. In conclusion, this study revealed the novelty of using ODEGs for investigating the inhibin and FSH hormone pathways that might open the way toward gene therapy for granulosa cell tumors. Also, these genes could be used as biomarkers for tracking the changes in inhibin and FSH hormone from the changes in the nutrition pattern.


Subject(s)
Granulosa Cells , Inhibins , Animals , Female , Follicle Stimulating Hormone/genetics , Follicle Stimulating Hormone/pharmacology , Gene Expression , Genomics , Granulosa Cells/metabolism , Humans , Inhibins/genetics , Mice , Mice, Knockout
9.
Porcine Health Manag ; 8(1): 31, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35787737

ABSTRACT

BACKGROUND: Bentonites, as a clay mineral, serve in pig farms as adsorbents of toxic substances. They are mainly used to reduce the negative impact of mycotoxins to maintain the performance and health status of animals. The new genotypes of pigs are highly sensitive to a range of antinutrients, including mycotoxins. Currently, attention is focused on more effective adsorbents of mycotoxins with a higher adsorption capacity. Such materials are in great demand among feed manufacturers. However, there is a concern that these new materials may also adsorb too many essential nutrients and decrease animal performance. The aim of the experiment was to evaluate the effect of the new generation of purified bentonites on the efficiency and health status of the pigs. RESULTS: Forty-eight slaughtered pigs with an average weight of 31.2 ± 2.6 kg were included in the experiment. The pigs were divided into two groups (2 × 24 pigs). Pigs were slaughtered at an average weight of 66.3 ± 5.2. The first group had a diet without clay (control-C). The second group (treatment-T) was fed a diet with a clay additive (purified bentonite) of 1.5 kg/t. Animals were fed the experimental diet for 35 days. In group T, a higher daily weight gain (by 4.8%) and feed intake (by 2.9%) was observed while the feed conversion decreased by 1.9%. There were no significant differences between the groups of pigs during observation in the evaluation of hematological, biochemical parameters of the blood. Morpho-pathological analysis of the jejunum showed similar signs of moderate lymphoplasmacytic infiltrate in the mucosa in the groups C and T, contained similar number of goblet cells. CONCLUSION: Taken together, the addition of the new generation of bentonite clays did not negatively influence the health status and the performance of pigs.

10.
J Anim Sci Biotechnol ; 13(1): 72, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35710460

ABSTRACT

The productivity and sustainability of livestock production systems are heavily influenced by animal nutrition. To maintain homeostatic balance in the body of the animal at different phases of life, the percentage of organically active minerals in livestock feed must be optimized. Selenium (Se) is a crucial trace mineral that is required for the maintenance of many functions of the body. Se nanoparticles (SeNPs) attracted considerable interest from researchers for a variety of applications a decade ago, owing to their extraordinary properties. SeNPs offer significant advantages over larger-sized materials, by having a comparatively wider surface area, increased surface energy, and high volume. Despite its benefits, SeNP also has toxic effects, therefore safety concerns must be taken for a successful application. The toxicological effects of SeNPs in animals are characterized by weight loss, and increased mortality rate. A safe-by-strategy to certify animal, human and environmental safety will contribute to an early diagnosis of all risks associated with SeNPs. This review is aimed at describing the beneficial uses and potential toxicity of SeNPs in various animals. It will also serve as a summary of different levels of SeNPs which should be added in the feed of animals for better performance.

11.
3 Biotech ; 12(4): 103, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35463041

ABSTRACT

The cullin-RING E3 ligases (CRLs) are the biggest components of the E3 ubiquitin ligase protein family, and they represent an essential role in various diseases that occur because of abnormal activation, particularly in tumors development. Regulation of CRLs needs neddylation, a post-translational modification involving an enzymatic cascade that transfers small, ubiquitin-like NEDD8 protein to CRLs. Many previous studies have confirmed neddylation as an enticing target for anticancer drug discoveries, and few recent studies have also found a significant increase in advancement in protein neddylation, including preclinical and clinical target validation to discover the neddylation inhibitor compound. In the present review, we first presented briefly the essence of CRLs' neddylation and its control, systematic analysis of CRLs, followed by the description of a few recorded chemical inhibitors of CRLs neddylation enzymes with recent examples of preclinical and clinical targets. We have also listed various structure-based pointing of protein-protein dealings in the CRLs' neddylation reaction, and last, the methods available to discover new inhibitors of neddylation are elaborated. This review will offer a concentrated, up-to-date, and detailed description of the discovery of neddylation inhibitors.

12.
Molecules ; 27(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408533

ABSTRACT

Ferroptosis is a recently described programmed cell death mechanism that is characterized by the buildup of iron (Fe)-dependent lipid peroxides in cells and is morphologically, biochemically, and genetically distinct from other forms of cell death, having emerged to play an important role in cancer biology. Ferroptosis has significant importance during cancer treatment because of the combination of factors, including suppression of the glutathione peroxidase 4 (Gpx4), cysteine deficiency, and arachidonoyl (AA) peroxidation, which cause cells to undergo ferroptosis. However, the physiological significance of ferroptosis throughout development is still not fully understood. This current review is focused on the factors and molecular mechanisms with the diagrammatic illustrations of ferroptosis that have a role in the initiation and sensitivity of ferroptosis in various malignancies. This knowledge will open a new road for research in oncology and cancer management.


Subject(s)
Ferroptosis , Neoplasms , Humans , Lipid Peroxidation , Lipid Peroxides , Neoplasms/drug therapy , Neoplasms/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase
13.
ACS Omega ; 7(7): 5615-5624, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35224323

ABSTRACT

Ubiquitination is a modification of proteins that has a powerful impact on protein function along with other cellular functions. This reaction is regulated through major enzymes, including E3 ligase as a chief enzyme. The Cullin-5 ubiquitin ligase (Cul5) possesses a variety of substrates that maintain the process of ubiquitination as well as proteasomal degradation. It regulates cell development, proliferation, and other physiological tasks in the human body. Moreover, it has been discovered that the expression of Cul5 plays a significant role in specific cancer cells while affecting the progression of tumor cells. This review is based on current knowledge about Cul5 and its expression, signaling pathways, regulation, virus-related responses, and inhibitors for therapeutic strategies.

14.
Molecules ; 27(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35164181

ABSTRACT

Compounds derived from plants have several anticancer properties. In the current study, one guaiane-type sesquiterpene dimer, vieloplain F, isolated from Xylopia vielana species, was tested against B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma. A comprehensive in silico analysis was conducted in this research to understand the pharmacological properties of a compound encompassing absorption, distribution, metabolism, excretion, and toxicity (ADMET), bioactivity score predictions, and molecular docking. During ADMET estimations, the FDA-approved medicine vemurafenib was hepatotoxic, cytochrome-inhibiting, and non-cardiotoxic compared to the vieloplain F. The bioactivity scores of vieloplain F were active for nuclear receptor ligand and enzyme inhibitor. During molecular docking experiments, the compound vieloplain F has displayed a higher binding potential with -11.8 kcal/mol energy than control vemurafenib -10.2 kcal/mol. It was shown that intermolecular interaction with the B-Raf complex and the enzyme's active gorge through hydrogen bonding and hydrophobic contacts was very accurate for the compound vieloplain F, which was then examined for MD simulations. In addition, simulations using MM-GBSA showed that vieloplain F had the greatest propensity to bind to active site residues. The vieloplain F has predominantly represented a more robust profile compared to control vemurafenib, and these results opened the road for vieloplain F for its utilization as a plausible anti-melanoma agent and anticancer drug in the next era.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Xylopia/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Humans , Melanoma/drug therapy , Melanoma/metabolism , Molecular Docking Simulation , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Sesquiterpenes/isolation & purification
15.
Biol Trace Elem Res ; 200(3): 971-987, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33884538

ABSTRACT

Selenium (Se) is an important microelement with numerous positive effects on human health and diseases. It is important to specify that the status and consumption of Se are for a specific community as the levels of Se are extremely unpredictable between different populations and regions. Our existing paper was based on the impacts of Se on human health and disease along with data on the Se levels in Middle Eastern countries. Overall, the findings of this comprehensive review show that the consumption and levels of Se are inadequate in Middle Eastern nations. Such findings, together with the growing awareness of the importance of Se to general health, require further work primarily on creating an acceptable range of blood Se concentration or other measures to determine optimal Se consumption and, consequently, to guarantee adequate Se supplementation in populations at high risk of low Se intake.


Subject(s)
Selenium , Humans , Nutritional Status , Selenoproteins
16.
J Med Virol ; 94(1): 88-98, 2022 01.
Article in English | MEDLINE | ID: mdl-34524697

ABSTRACT

The outbreak of the current coronavirus disease (COVID-19) occurred in late 2019 and quickly spread all over the world. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to a genetically diverse group that mutates continuously leading to the emergence of multiple variants. Although a few antiviral agents and anti-inflammatory medicines are available, thousands of individuals have passed away due to emergence of new viral variants. Thus, proper surveillance of the SARS-CoV-2 genome is needed for the rapid identification of developing mutations over time, which are of the major concern if they occur specifically in the surface spike proteins of the virus (neutralizing analyte). This article reviews the potential mutations acquired by the SARS-CoV2 since the pandemic began and their significant impact on the neutralizing efficiency of vaccines and validity of the diagnostic assays.


Subject(s)
COVID-19/epidemiology , Genetic Drift , Genome, Viral/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , Gene Frequency/genetics , Genetic Variation/genetics , Humans , Immunogenicity, Vaccine/immunology , Spike Glycoprotein, Coronavirus/genetics
17.
Biomed Res Int ; 2020: 2584627, 2020.
Article in English | MEDLINE | ID: mdl-32550227

ABSTRACT

The V-Akt Murine Thymoma Viral Oncogene Homolog 3 (AKT3) gene is of the serine/threonine-protein kinase family and influences the production of milk fats and cholesterol by acting on the sterol administrative area restricting protein (SREBP). The AKT3 gene is highly preserved in animals, and during lactation in cattle, its expression increases. The AKT3 gene is expressed in the digestive system, mammary gland, and immune cells. A phylogenetic investigation was performed to clarify the evolutionary role of AKT3, by maximum probability. The AKT3 gene sequence data of various mammalian species was evident even with animals undergoing breeding selection. From 39 mammalian species studied, there was a signal of positive diversifying selection with Hominidae at 13Q, 16G, 23R, 24P, 121P, 294K, 327V, 376L, 397K, 445T, and 471F among other codon sites of the AKT3 gene. These sites were codes for amino acids such as arginine, proline, lysine, and leucine indicating major roles for the function of immunological proteins, and in particular, the study highlighted the importance of changes in gene expression of AKT3 on immunity.


Subject(s)
Evolution, Molecular , Proto-Oncogene Proteins c-akt , Selection, Genetic/genetics , Animals , Cattle/genetics , Humans , Mammals/genetics , Protein Interaction Maps/genetics , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/classification , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
18.
Reprod Biol ; 17(4): 380-388, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29097083

ABSTRACT

Melatonin receptor 1 (MT1) performs a critical role in the regulation of the animal reproductive system, particularly in follicular growth, and has a considerable effect on reproductive performance. However, the role that MT1 plays in regulating hormones associated with reproduction remains unclear. This study was designed to examine the physiological role of constitutive MT1 silencing and follicle stimulating hormone (FSH) treatment in reproduction, making use of mouse granulosa cells (mGCs) as a model. To understand the constitutive role of MT1 in ovarian physiology, the RNAi-Ready pSIREN-RETROQ-ZsGreen Vector mediated recombinant pshRNA was used to silence MT1 gene expression. Furthermore, we observed that the expression of MT1 was successfully inhibited both at the protein and mRNA levels (P<0.001). We demonstrated that RNAi-B-mediated MT1 down-regulation significantly promoted apoptosis (P<0.001), inhibited proliferation, and regulated the cell cycle at the S-phase; conversely, FSH treatment partially aided the apoptotic effect and improved proliferation but showed a significant effect at the S-phase of the cell cycle. Transitory knockdown of MT1 proved essential in the function of mGCs, as it significantly decreased cyclic adenosine monophospahte (cAMP) level and increased cell apoptosis. Following knockdown of MT1, the expression of Bax was significantly up-regulated (P<0.001), but Bcl-2 was slightly down-regulated, both at the transcriptional and at translational levels. Moreover, the silencing of MT1 and its constitutive effect on FSH significantly promoted an increase in estradiol (P<0.001) and slightly decreased the concentration of progesterone. Together, our data indicates that MT1 suppression leads to interference in the normal physiological function of the ovary by enhancing follicular apoptosis, inhibiting proliferation, and influencing hormonal signaling, whereas constitutive FSH treatment counteracted the negative down-regulatory effects of MT1 on mGCs.


Subject(s)
Apoptosis/physiology , Cell Proliferation/physiology , Follicle Stimulating Hormone/pharmacology , Granulosa Cells/metabolism , Receptor, Melatonin, MT1/genetics , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Proliferation/drug effects , Cyclic AMP/metabolism , Down-Regulation/drug effects , Down-Regulation/physiology , Estradiol/metabolism , Female , Gene Knockdown Techniques , Gene Silencing , Granulosa Cells/drug effects , Mice , Progesterone/metabolism , RNA Interference , Receptor, Melatonin, MT1/metabolism , Up-Regulation/drug effects , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...