Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mov Sci ; 96: 103250, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964027

ABSTRACT

Movement sonification can improve motor control in both healthy subjects (e.g., learning or refining a sport skill) and those with sensorimotor deficits (e.g., stroke patients and deafferented individuals). It is not known whether improved motor control and learning from movement sonification are driven by feedback-based real-time ("online") trajectory adjustments, adjustments to internal models over multiple trials, or both. We searched for evidence of online trajectory adjustments (muscle twitches) in response to movement sonification feedback by comparing the kinematics and error of reaches made with online (i.e., real-time) and terminal sonification feedback. We found that reaches made with online feedback were significantly more jerky than reaches made with terminal feedback, indicating increased muscle twitching (i.e., online trajectory adjustment). Using a between-subject design, we found that online feedback was associated with improved motor learning of a reach path and target over terminal feedback; however, using a within-subjects design, we found that switching participants who had learned with online sonification feedback to terminal feedback was associated with a decrease in error. Thus, our results suggest that, with our task and sonification, movement sonification leads to online trajectory adjustments which improve internal models over multiple trials, but which themselves are not helpful online corrections.

2.
NPJ Microgravity ; 10(1): 28, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480736

ABSTRACT

Self-motion perception is a multi-sensory process that involves visual, vestibular, and other cues. When perception of self-motion is induced using only visual motion, vestibular cues indicate that the body remains stationary, which may bias an observer's perception. When lowering the precision of the vestibular cue by for example, lying down or by adapting to microgravity, these biases may decrease, accompanied by a decrease in precision. To test this hypothesis, we used a move-to-target task in virtual reality. Astronauts and Earth-based controls were shown a target at a range of simulated distances. After the target disappeared, forward self-motion was induced by optic flow. Participants indicated when they thought they had arrived at the target's previously seen location. Astronauts completed the task on Earth (supine and sitting upright) prior to space travel, early and late in space, and early and late after landing. Controls completed the experiment on Earth using a similar regime with a supine posture used to simulate being in space. While variability was similar across all conditions, the supine posture led to significantly higher gains (target distance/perceived travel distance) than the sitting posture for the astronauts pre-flight and early post-flight but not late post-flight. No difference was detected between the astronauts' performance on Earth and onboard the ISS, indicating that judgments of traveled distance were largely unaffected by long-term exposure to microgravity. Overall, this constitutes mixed evidence as to whether non-visual cues to travel distance are integrated with relevant visual cues when self-motion is simulated using optic flow alone.

3.
Exp Brain Res ; 241(11-12): 2577-2590, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37690051

ABSTRACT

People continuously adapt their movements to ever-changing circumstances, and particularly in skills training and rehabilitation, it is crucial that we understand how to optimize implicit adaptation in order for these processes to require as little conscious effort as possible. Although it is generally assumed that the way to do this is by introducing perturbations gradually, the literature is ambivalent on the effectiveness of this approach. Here, we tested whether there are differences in motor performance when adapting to an abrupt compared to a ramped visuomotor rotation. Using a within-subjects design, we tested this question under 3 different rotation sizes: 30-degrees, 45-degrees, and 60-degrees, as well as in 3 different populations: younger adults, older adults, and patients with mild cerebellar ataxia. We find no significant differences in either the behavioural outcomes, or model fits, between abrupt and gradual learning across any of the different conditions. Neither age, nor cerebellar ataxia had any significant effect on error-sensitivity either. These findings together indicate that error-sensitivity is not modulated by introducing a perturbation abruptly compared to gradually, and is also unaffected by age or mild cerebellar ataxia.


Subject(s)
Cerebellar Ataxia , Humans , Aged , Learning , Movement , Cerebellum , Adaptation, Physiological , Psychomotor Performance
4.
Sci Rep ; 9(1): 4378, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867525

ABSTRACT

Virtual reality (VR) provides a valuable research tool for studying what occurs when sensorimotor feedback loops are manipulated. Here we measured whether exposure to a novel temporal relationship between action and sensory reaction in VR causes recalibration of time perception. We asked 31 participants to perform time perception tasks where the interval of a moving probe was reproduced using continuous or discrete motor methods. These time perception tasks were completed pre- and post-exposure to dynamic VR content in a block-counterbalanced order. One group of participants experienced a standard VR task ("normal-time"), while another group had their real-world movements coupled to the flow of time in the virtual space ("movement contingent time-flow; MCTF"). We expected this novel action-perception relationship to affect continuous motor time perception performance, but not discrete motor time perception. The results indicated duration-dependent recalibration specific to a motor task involving continuous movement such that the probe intervals were under-estimated by approximately 15% following exposure to VR with the MCTF manipulation. Control tasks in VR and non-VR settings produced similar results to those of the normal-time VR group, confirming the specificity of the MCTF manipulation. The findings provide valuable insights into the potential impact of VR on sensorimotor recalibration. Understanding this process will be valuable for the development and implementation of rehabilitation practices.

SELECTION OF CITATIONS
SEARCH DETAIL
...