Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747258

ABSTRACT

In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective 'raw' chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal's sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary 'secretome', both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.


Subject(s)
Vomeronasal Organ , Animals , Vomeronasal Organ/physiology , Mice , Male , Female , Odorants/analysis , Pheromones/urine , Pheromones/metabolism , Mice, Inbred C57BL , Mice, Inbred Strains
2.
BMC Biol ; 19(1): 133, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34182994

ABSTRACT

BACKGROUND: For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. RESULTS: First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. CONCLUSIONS: Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions.


Subject(s)
Olfactory Bulb , Animals , Cues , Male , Mice , Sensory Receptor Cells , Smell , Stereotyped Behavior , Vomeronasal Organ
3.
Front Comput Neurosci ; 15: 678232, 2021.
Article in English | MEDLINE | ID: mdl-35069160

ABSTRACT

Many studies on the drift-diffusion model (DDM) explain decision-making based on a unified analysis of both accuracy and response times. This review provides an in-depth account of the recent advances in DDM research which ground different DDM parameters on several brain areas, including the cortex and basal ganglia. Furthermore, we discuss the changes in DDM parameters due to structural and functional impairments in several clinical disorders, including Parkinson's disease, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD), and schizophrenia. This review thus uses DDM to provide a theoretical understanding of different brain disorders.

4.
J Neurosci Methods ; 285: 19-32, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28476589

ABSTRACT

BACKGROUND: Achieving controlled stimulus delivery is a major challenge in the physiological analysis of the vomeronasal system (VNS). NEW METHOD: We provide a comprehensive description of a setup allowing controlled stimulus delivery into the vomeronasal organ (VNO) of anesthetized mice. VNO suction is achieved via electrical stimulation of the sympathetic nerve trunk (SNT) using cuff electrodes, followed by flushing of the nasal cavity. Successful application of this methodology depends on several aspects including the surgical preparation, fabrication of cuff electrodes, experimental setup modifications, and the stimulus delivery and flushing. Here, we describe all these aspects in sufficient detail to allow other researchers to readily adopt it. We also present a custom written MATLAB based software with a graphical user interface that controls all aspects of the actual experiment, including trial sequencing, hardware control, and data logging. RESULTS: The method allows measurement of stimulus evoked sensory responses in brain regions that receive vomeronasal inputs. An experienced investigator can complete the entire surgical procedure within thirty minutes. COMPARISON WITH EXISTING METHODS: This is the only approach that allows repeated and controlled stimulus delivery to the intact VNO, employing the natural mode of stimulus uptake. The approach is economical with respect to stimuli, requiring stimulus volumes as low as 1-2µl. CONCLUSIONS: This comprehensive description will allow other investigators to adapt this setup to their own experimental needs and can thus promote our physiological understanding of this fascinating chemosensory system. With minor changes it can also be adapted for other rodent species.


Subject(s)
Electric Stimulation/instrumentation , Electric Stimulation/methods , Neurons/physiology , Software , Stereotaxic Techniques/instrumentation , Vomeronasal Organ , Action Potentials/physiology , Animals , Mice , Vomeronasal Organ/cytology , Vomeronasal Organ/physiology , Vomeronasal Organ/surgery
5.
PLoS One ; 8(5): e60615, 2013.
Article in English | MEDLINE | ID: mdl-23696785

ABSTRACT

UNLABELLED: BACKGROUND OF THE WORK: The phylogenetic position and evolution of Hemidactylus anamallensis (family Gekkonidae) has been much debated in recent times. In the past it has been variously assigned to genus Hoplodactylus (Diplodactylidae) as well as a monotypic genus 'Dravidogecko' (Gekkonidae). Since 1995, this species has been assigned to Hemidactylus, but there is much disagreement between authors regarding its phylogenetic position within this genus. In a recent molecular study H. anamallensis was sister to Hemidactylus but appeared distinct from it in both mitochondrial and nuclear markers. However, this study did not include genera closely allied to Hemidactylus, thus a robust evaluation of this hypothesis was not undertaken. METHODS: The objective of this study was to investigate the phylogenetic position of H. anamallensis within the gekkonid radiation. To this end, several nuclear and mitochondrial markers were sequenced from H. anamallensis, selected members of the Hemidactylus radiation and genera closely allied to Hemidactylus. These sequences in conjunction with published sequences were subjected to multiple phylogenetic analyses. Furthermore the nuclear dataset was also subjected to molecular dating analysis to ascertain the divergence between H. anamallensis and related genera. RESULTS AND CONCLUSION: Results showed that H. anamallensis lineage was indeed sister to Hemidactylus group but was separated from the rest of the Hemidactylus by a long branch. The divergence estimates supported a scenario wherein H. anamallensis dispersed across a marine barrier to the drifting peninsular Indian plate in the late Cretaceous whereas Hemidactylus arrived on the peninsular India after the Indian plate collided with the Eurasian plate. Based on these molecular evidence and biogeographical scenario we suggest that the genus Dravidogecko should be resurrected.


Subject(s)
Lizards/genetics , Phylogeny , Animals , Bayes Theorem , Evolution, Molecular , Lizards/classification
6.
Mol Phylogenet Evol ; 57(1): 459-65, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20601015

ABSTRACT

Represented by approximately 85 species, Hemidactylus is one of the most diverse and widely distributed genera of reptiles in the world. In the Indian subcontinent, this genus is represented by 28 species out of which at least 13 are endemic to this region. Here, we report the phylogeny of the Indian Hemidactylus geckos based on mitochondrial and nuclear DNA markers sequenced from multiple individuals of widely distributed as well as endemic congeners of India. Results indicate that a majority of the species distributed in India form a distinct clade whose members are largely confined to the Indian subcontinent thus representing a unique Indian radiation. The remaining Hemidactylus geckos of India belong to two other geographical clades representing the Southeast Asian and West-Asian arid zone species. Additionally, the three widely distributed, commensal species (H. brookii, H. frenatus and H. flaviviridis) are nested within the Indian radiation suggesting their Indian origin. Dispersal-vicariance analysis also supports their Indian origin and subsequent dispersal out-of-India into West-Asian arid zone and Southeast Asia. Thus, Indian subcontinent has served as an important arena for diversification amongst the Hemidactylus geckos and in the evolution and spread of its commensal geckos.


Subject(s)
Evolution, Molecular , Lizards/genetics , Phylogeny , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , India , Lizards/classification , Sequence Analysis, DNA
7.
Acta Cytol ; 54(3): 349-52, 2010.
Article in English | MEDLINE | ID: mdl-20518426

ABSTRACT

BACKGROUND: Rosai-Dorfman disease (RDD), or sinus histiocytosis with massive lymphadenopathy, is a benign, self-limiting disease. In the majority of cases, there is massive and painless lymphadenopathy in any lymph node group but most commonly in the cervical lymph nodes, associated with constitutional symptoms. Extranodal involvement has been reported to occur in almost every organ system, with or without concomitant nodal disease. The breast is a rare site of presentation of this disease. CASE: A 35-year-old male presented with a hard, nodular swelling in the lower and outer quadrant of the right breast, with a clinical suspicion of malignancy. A diagnosis of sinus histiocytosis with massive lymphadenopathy, or RDD, was offered based on the presence of numerous lymphocytes, plasma cells, a few neutrophils and large histiocytes showing emperipolesis in fine needle aspiration smears. CONCLUSION: Mammary RDD is extremely rare in males. The cytologic features are fairly characteristic and should be considered in the differential diagnosis whenever atypical histiocytes and emperipolesis are encountered in fine needle aspiration smears.


Subject(s)
Breast Diseases/pathology , Histiocytosis, Sinus/pathology , Adult , Biopsy, Fine-Needle , Breast Neoplasms, Male/pathology , Diagnosis, Differential , Humans , Lymphoma/pathology , Male , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...