Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Planta ; 259(6): 143, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704489

ABSTRACT

MAIN CONCLUSION: The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.


Subject(s)
Cenchrus , Disease Resistance , Plant Diseases , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Cenchrus/genetics , Phylogeny , Magnaporthe/physiology , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Genome, Plant/genetics , Pennisetum/genetics , Pennisetum/microbiology , Pennisetum/immunology
2.
Plant Physiol Biochem ; 208: 108419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377888

ABSTRACT

Withania somnifera (Ashwagandha), is one of the most reputed Indian medicinal plants, having immense pharmacological activities due to the occurrence of withanolides. The withanolides are biosynthesized through triterpenoid biosynthetic pathway with the involvement of WsCAS leading to cyclization of 2, 3 oxidosqualene, which is a key metabolite to further diversify to a myriad of phytochemicals. In contrast to the available reports on the studies of WsCAS in withanolide biosynthesis, its involvement in phytosterol biosynthesis needs investigation. Present work deals with the understanding of role of WsCAS triterpenoid synthase gene in the regulation of biosynthesis of phytosterols & withanolides. Docking studies of WsCAS protein revealed Conserved amino acids, DCATE motif, and QW motif which are involved in efficient substrate binding, structure stabilization, and catalytic activity. Overexpression/silencing of WsCAS leading to increment/decline of phytosterols confers its stringent regulation in phytosterols biosynthesis. Differential regulation of WsCAS on the metabolic flux towards phytosterols and withanolide biosynthesis was observed under abiotic stress conditions. The preferential channelization of 2, 3 oxidosqualene towards withanolides and/or phytosterols occurred under heat/salt stress and cold/water stress, respectively. Stigmasterol and ß-sitosterol showed major contribution in high/low temperature and salt stress, and campesterol in water stress management. Overexpression of WsCAS in Arabidopsis thaliana led to the increment in phytosterols in general. Thus, the WsCAS plays important regulatory role in the biosynthetic pathway of phytosterols and withanolides under abiotic stress conditions.


Subject(s)
Phytosterols , Squalene/analogs & derivatives , Triterpenes , Withania , Withanolides , Withanolides/metabolism , Sterols , Withania/genetics , Withania/metabolism , Triterpenes/metabolism , Dehydration , Phytosterols/metabolism , Stress, Physiological/genetics
3.
BMC Plant Biol ; 24(1): 75, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281915

ABSTRACT

BACKGROUND: The nucleotide binding site leucine rich repeat (NBLRR) genes significantly regulate defences against phytopathogens in plants. The genome-wide identification and analysis of NBLRR genes have been performed in several species. However, the detailed evolution, structure, expression of NBLRRs and functional response to Magnaporthe grisea are unknown in finger millet (Eleusine coracana (L.) Gaertn.). RESULTS: The genome-wide scanning of the finger millet genome resulted in 116 NBLRR (EcNBLRRs1-116) encompassing 64 CC-NB-LRR, 47 NB-LRR and 5 CCR-NB-LRR types. The evolutionary studies among the NBLRRs of five Gramineae species, viz., purple false brome (Brachypodium distachyon (L.) P.Beauv.), finger millet (E. coracana), rice (Oryza sativa L.), sorghum (Sorghum bicolor L. (Moench)) and foxtail millet (Setaria italica (L.) P.Beauv.) showed the evolution of NBLRRs in the ancestral lineage of the target species and subsequent divergence through gene-loss events. The purifying selection (Ka/Ks < 1) shaped the expansions of NBLRRs paralogs in finger millet and orthologs among the target Gramineae species. The promoter sequence analysis showed various stress- and phytohormone-responsive cis-acting elements besides growth and development, indicating their potential role in disease defence and regulatory mechanisms. The expression analysis of 22 EcNBLRRs in the genotypes showing contrasting responses to Magnaporthe grisea infection revealed four and five EcNBLRRs in early and late infection stages, respectively. The six of these nine candidate EcNBLRRs proteins, viz., EcNBLRR21, EcNBLRR26, EcNBLRR30, EcNBLRR45, EcNBLRR55 and EcNBLRR76 showed CC, NB and LRR domains, whereas the EcNBLRR23, EcNBLRR32 and EcNBLRR83 showed NB and LRR somains. CONCLUSION: The identification and expression analysis of EcNBLRRs showed the role of EcNBLRR genes in assigning blast resistance in finger millet. These results pave the foundation for in-depth and targeted functional analysis of EcNBLRRs through genome editing and transgenic approaches.


Subject(s)
Eleusine , Eleusine/genetics , Pyricularia grisea , Nucleotides/metabolism , Genotype , Binding Sites , Phylogeny
4.
J Fungi (Basel) ; 8(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36354901

ABSTRACT

Zinc binuclear cluster proteins (ZBC; Zn(II)2Cys6) are unique to the fungi kingdom and associated with a series of functions, viz., the utilization of macromolecules, stress tolerance, and most importantly, host-pathogen interactions by imparting virulence to the pathogen. Codon usage bias (CUB) is the phenomenon of using synonymous codons in a non-uniform fashion during the translation event, which has arisen because of interactions among evolutionary forces. The Zn(II)2Cys6 coding sequences from nine Ascomycetes plant pathogenic species and model system yeast were analysed for compositional and codon usage bias patterns. The clustering analysis diverged the Ascomycetes fungi into two clusters. The nucleotide compositional and relative synonymous codon usage (RSCU) analysis indicated GC biasness toward Ascomycetes fungi compared with the model system S. cerevisiae, which tends to be AT-rich. Further, plant pathogenic Ascomycetes fungi belonging to cluster-2 showed a higher number of GC-rich high-frequency codons than cluster-1 and was exclusively AT-rich in S. cerevisiae. The current investigation also showed the mutual effect of the two evolutionary forces, viz. natural selection and compositional constraints, on the CUB of Zn(II)2Cys6 genes. The perseverance of GC-rich codons of Zn(II)2Cys6 in Ascomycetes could facilitate the invasion process. The findings of the current investigation show the role of CUB and nucleotide composition in the evolutionary divergence of Ascomycetes plant pathogens and paves the way to target specific codons and sequences to modulate host-pathogen interactions through genome editing and functional genomics tools.

5.
Bioresour Technol ; 347: 126697, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35026422

ABSTRACT

Plastics are a kind of utility product that has become part and parcel of one's life. Their continuous usage, accumulation, and contamination of soil and water pose a severe threat to the biotic and abiotic components of the environment. It not only increases the carbon footprints but also contributes to global warming. This calls for an urgent need to develop novel strategies for the efficient degradation of plastics. The microbial strains equipped with the potential of degrading plastic materials, which can further be converted into usable products, are blessings for the ecosystem. This review comprehensively summarizes the microbial technologies to degrade different plastic types, such as polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polypropylene (PP), and polyurethane (PU). The study also describes the utilization of degraded plastic material as feedstock for its conversion into high-value chemicals.


Subject(s)
Ecosystem , Plastics , Biodegradation, Environmental , Polyethylene , Polyurethanes
6.
Planta ; 253(1): 20, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33398404

ABSTRACT

MAIN CONCLUSION: The recombinant caffeic acid 3-O-methyltransferase gene has been cloned and characterized from Neem. The gene is involved in ferulic acid biosynthesis, a key intermediate component of lignin biosynthesis. Azadirachta indica (Neem) is a highly reputed traditional medicinal plant and is phytochemically well-known for its limonoids. Besides limonoids, phenolics are also distinctively present, which add more medicinal attributes to Neem. Caffeic acid is one of such phenolic compound and it can be converted enzymatically into another bioactive phytomolecule, ferulic acid. This conversion requires transfer of a methyl group from a donor to caffeic acid under the catalytic action of an appropriate methyltransferase. In this study, caffeic acid 3-O-methyltransferase gene from Neem (NCOMT) fruits has been isolated and heterologously expressed in E. coli. The recombinant NCOMT enzyme was purified, which exhibited efficient catalytic conversion of caffeic acid into ferulic acid, a highly potential pharmaceutical compound. The purified recombinant enzyme was physico-kinetically characterized for its catalysis. The analysis of tissue-wide expression of NCOMT gene revealed interesting pattern of transcript abundance reflecting its role in the development of fruit tissues. Further, NCOMT was heterologously overexpressed in Withania somnifera and Ocimum species, to analyze its role in ferulic acid biosynthesis in planta. Thus, the study provides insight for the endogenous role of NCOMT in ferulic acid biosynthesis en route to lignin, an important structural component. To the best of our knowledge, NCOMT pertains to be the first enzyme of the secondary metabolism that has been purified and kinetically characterized from Neem. This study may also have important prospects of applications as the observation on heterologous expression of NCOMT showed its involvement in the maintenance of the in vivo pool of ferulic acid in the plants. Thus, the study involving NCOMT opens up new dimensions of metabolic engineering approaches for the biosynthesis of potential therapeutically important phytomolecules in heterologous systems.


Subject(s)
Azadirachta , Fruit , Methyltransferases , Ocimum , Recombinant Proteins , Withania , Azadirachta/enzymology , Escherichia coli/genetics , Fruit/enzymology , Fruit/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Ocimum/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Withania/genetics
7.
Protoplasma ; 256(4): 893-907, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30656458

ABSTRACT

Ocimum species commonly referred to as "Tulsi" are well-known for their distinct medicinal and aromatic properties. The characteristic aroma of Ocimum species and cultivars is attributed to their specific combination of volatile phytochemicals mainly belonging to terpenoid and/or phenylpropanoid classes in their essential oils. The essential oil constituents are synthesized and sequestered in specialized epidermal secretory structures called as glandular trichomes. In this comparative study, inter- and intra-species diversity in structural attributes and profiles of expression of selected genes related to terpenoid and phenylpropanoid biosynthetic pathways have been investigated. This is performed to seek relationship of variations in the yield and phytochemical composition of the essential oils. Microscopic analysis of trichomes of O. basilicum, O. gratissimum, O. kilimandscharicum, and O. tenuiflorum (green and purple cultivars) revealed substantial variations in density, size, and relative proportions of peltate and capitate trichomes among them. The essential oil yield has been observed to be controlled by the population, dominance, and size of peltate and capitate glandular trichomes. The essential oil sequestration in leaf is controlled by the dominance of peltate glandular trichome size over its number and is also affected by the capitate glandular trichome size/number with variations in leaf area albeit at lower proportions. Comprehension and comparison of results of GC-MS analysis of essential oils showed that most of the Ocimum (O. basilicum, O. tenuiflorum, and O. gratissimum) species produce phenylpropanoids (eugenol, methyl chavicol) as major volatiles except O. kilimandscharicum, which is discrete in being monoterpenoid-rich species. Among the phenylpropanoid-enriched Ocimum (O. basilicum, O. gratissimum, O. tenuiflorum purple, O. tenuiflorum green) as well, terpenoids were important constituents in imparting characteristic aroma. Further, comparative abundance of transcripts of key genes of phenylpropanoid (PAL, C4H, 4CL, CAD, COMT, and ES) and terpenoid (DXS and HMGR) biosynthetic pathways was evaluated vis-à-vis volatile oil constituents. Transcript abundance demonstrated that richness of their essential oils with specific constituent(s) of a chemical group/subgroup was manifested by the predominant upregulation of phenylpropanoid/terpenoid pathway genes. The study provides trichomes as well as biosynthetic pathway-based knowledge for genetic improvement in Ocimum species for essential oil yield and quality.


Subject(s)
Ocimum/metabolism , Oils, Volatile/chemistry , Oils, Volatile/metabolism , Trichomes/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Plant , Monoterpenes/metabolism , Ocimum/genetics , Plant Leaves/anatomy & histology , Plant Oils/chemistry , Plant Oils/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Trichomes/physiology , Trichomes/ultrastructure
8.
Sci Rep ; 8(1): 3547, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476116

ABSTRACT

Ocimum kilimandscharicum is unique in possessing terpenoids whereas other Ocimum species are renowned for phenylpropanoids as major constituents of essential oil. The key enzyme of MVA/terpenoid metabolic pathway viz 3-hydroxy-3-methylglutaryl Co-A reductase (OkHMGR) of 1.7-Kb ORF encoding ~60-kDa protein was cloned from O. kilimandscharicum and its kinetic characteristics revealed the availability of HMG-CoA as a control point of MVA-pathway. Transcript profiling of the OkHMGR elucidated tissue-specific functions of the gene in flower and leaf tissues in accumulation of terpenoidal essential oil. OkHMGR was differentially regulated in response to exposure to methyl-jasmonate, salicylic-acid, and stress conditions such-as salt and temperature stress, demonstrating its key role in managing signaling and stress-responses. To elucidate its functional role, OkHMGR was transiently over-expressed in homologous and heterologous plants such as O. sanctum, O. basilicum, O. gratissimum, Withania somnifera and Artemisia annua. The over-expression and inhibition dual strategy revealed that the additional OkHMGR in-planta could afford endogenous flow of isoprenoid units towards synthesis of terpenoids. The present study provides in-depth insight of OkHMGR in regulation of biosynthesis of non-plastidal isoprenoids. This is first report on any gene of MVA/isoprenoid pathway from under-explored Camphor Tulsi belonging to genus Ocimum. Studies also suggested that OkHMGR could be a potential tool for attempting metabolic engineering for enhancing medicinally important terpenoidal metabolites in plants.


Subject(s)
Acyl Coenzyme A/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Ocimum/genetics , Terpenes/metabolism , Acetates/metabolism , Acyl Coenzyme A/genetics , Artemisia annua/genetics , Artemisia annua/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Ocimum/chemistry , Oils, Volatile/chemistry , Oils, Volatile/metabolism , Oxylipins/metabolism , Salicylic Acid/pharmacology , Salt Stress/genetics , Withania/genetics , Withania/metabolism
9.
Physiol Plant ; 159(4): 381-400, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27580641

ABSTRACT

Rose-scented geranium (Pelargonium spp.) is one of the most important aromatic plants and is well known for its diverse perfumery uses. Its economic importance is due to presence of fragrance rich essential oil in its foliage. The essential oil is a mixture of various volatile phytochemicals which are mainly terpenes (isoprenoids) in nature. In this study, on the geranium foliage genes related to isoprenoid biosynthesis (DXS, DXR and HMGR) were isolated, cloned and confirmed by sequencing. Further, the first gene of 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, 1-deoxy-d-xylulose-5-phosphate synthase (GrDXS), was made full length by using rapid amplification of cDNA ends strategy. GrDXS contained a 2157 bp open reading frame that encoded a polypeptide of 792 amino acids having calculated molecular weight 77.5 kDa. This study is first report on heterologous expression and kinetic characterization of any gene from this economically important plant. Expression analysis of these genes was performed in different tissues as well as at different developmental stages of leaves. In response to external elicitors, such as methyl jasmonate, salicylic acid, light and wounding, all the three genes showed differential expression profiles. Further GrDXS was over expressed in the homologous (rose-scented geranium) as well as in heterologous (Withania somnifera) plant systems through genetic transformation approach. The over-expression of GrDXS led to enhanced secondary metabolites production (i.e. essential oil in rose-scented geranium and withanolides in W. somnifera). To the best of our knowledge, this is the first report showing the expression profile of the three genes related to isoprenoid biosynthesis pathways operated in rose-scented geranium as well as functional characterization study of any gene from rose-scented geranium through a genetic transformation system.


Subject(s)
Biosynthetic Pathways/genetics , Butadienes/metabolism , Genes, Plant , Geranium/genetics , Hemiterpenes/metabolism , Pentanes/metabolism , Plastids/metabolism , Secondary Metabolism/genetics , Terpenes/metabolism , Withania/genetics , Acetates/pharmacology , Base Sequence , Biocatalysis/drug effects , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/radiation effects , Cloning, Molecular , Computational Biology , Cyclopentanes/pharmacology , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Geranium/drug effects , Geranium/radiation effects , Light , Oxylipins/pharmacology , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plastids/drug effects , Plastids/radiation effects , Recombinant Proteins/metabolism , Secondary Metabolism/drug effects , Secondary Metabolism/radiation effects , Sequence Alignment , Sequence Analysis, DNA , Structural Homology, Protein , Withania/drug effects , Withania/radiation effects
10.
PLoS One ; 11(2): e0149691, 2016.
Article in English | MEDLINE | ID: mdl-26919744

ABSTRACT

Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.


Subject(s)
Intramolecular Transferases/metabolism , Withania/metabolism , Withanolides/metabolism , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant , Intramolecular Transferases/genetics , Plants, Genetically Modified , RNA Interference , Withania/genetics
11.
Recent Pat Biotechnol ; 8(1): 25-35, 2014.
Article in English | MEDLINE | ID: mdl-24354530

ABSTRACT

Withania somnifera Dunal is one of the most commonly used plants in Ayurvedic and indigenous system of medicine in India for over thousands of years. In view of its varied therapeutic potential, the plant has also been the subject of considerable scientific attention. The major chemical constituents of the Withania genus, the withanolides, are a group of naturally occurring C28-steroidal lactones built on an intact or rearranged ergostane framework, in which C22 and C26 are oxidized to form a six-member lactone ring. In recent years, numerous pharmacological investigations have been carried out utilizing W. somnifera extracts and several patents have been filed on pharmacological and medicinal importance of withanolides and extracts of W. somnifera, individually or in combination. Considering the immense importance of withanolides for medicinal purposes, the establishment of strategies to improve withanolides yield are highly desirable. Under natural conditions, W. somnifera possesses restricted levels of withanolides then, alternatives for obtaining withanolides in better yields are imperative. In vitro approaches followed by metabolic engineering could be attractive tools to achieve this goal. Therefore, we present here an overview of the development of various protocols for in vitro tissue regeneration from W. somnifera and in vitro secondary metabolite production as well. The review also gives an account of selected patents on various important activities of phytochemicals and extracts of W. somnifera.


Subject(s)
Withania/chemistry , Withanolides/chemistry , Antineoplastic Agents/therapeutic use , Cell Culture Techniques , Humans , Inflammation/prevention & control , Neoplasms/drug therapy , Patents as Topic , Plant Cells/chemistry , Plant Cells/metabolism , Plant Roots/cytology , Plant Roots/metabolism , Plant Shoots/cytology , Plant Shoots/metabolism , Withania/cytology , Withania/metabolism , Withanolides/metabolism , Withanolides/therapeutic use
12.
Protoplasma ; 250(2): 451-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22766977

ABSTRACT

An efficient and reproducible Agrobacterium-mediated genetic transformation of Withania coagulans was achieved using leaf explants of in vitro multiple shoot culture. The Agrobacterium strain LBA4404 harboring the binary vector pIG121Hm containing ß-glucuronidase gene (gusA) under the control of CaMV35S promoter was used in the development of transformation protocol. The optimal conditions for the Agrobacterium-mediated transformation of W. coagulans were found to be the co-cultivation of leaf explants for 20 min to agrobacterial inoculum (O.D. 0.4) followed by 3 days of co-cultivation on medium supplemented with 100 µM acetosyringone. Shoot bud induction as well as differentiation occurred on Murashige and Skoog medium supplemented with 10.0 µM 6-benzylaminopurine, 8.0 µM indole 3-acetic acid, and 50.0 mgl(-1) kanamycin after three consecutive cycles of selection. Elongated shoots were rooted using a two-step procedure involving root induction in a medium containing 2.5 µM indole 3-butyric acid for 1 week and then transferred to hormone free one-half MS basal for 2 weeks. We were successful in achieving 100 % frequency of transient GUS expression with 5 % stable transformation efficiency using optimized conditions. PCR analysis of T0 transgenic plants showed the presence of gusA and nptII genes confirming the transgenic event. Histochemical GUS expression was observed in the putative transgenic W. coagulans plants. Thin layer chromatography showed the presence of similar type of withanolides in the transgenic and non-transgenic regenerated plants. A. tumefaciens mediated transformation system via leaf explants developed in this study will be useful for pathway manipulation using metabolic engineering for bioactive withanolides in W. coagulans, an important medicinal plant.


Subject(s)
Agrobacterium tumefaciens/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Transformation, Genetic/genetics , Withania/genetics , Chromatography, Thin Layer , Plant Proteins/genetics , Polymerase Chain Reaction , Withanolides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...