Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38004756

ABSTRACT

The gastric pathogen, Helicobacter pylori bacteria have to swim across a pH gradient from 2 to 7 in the mucus layer to colonize the gastric epithelium. Previous studies from our group have shown that porcine gastric mucin (PGM) gels at an acidic pH < 4, and H. pylori bacteria are unable to swim in the gel, although their flagella rotate. Changing pH impacts both the rheological properties of gastric mucin and also influences the proton (H+)-pumped flagellar motors of H. pylori as well as their anti-pH sensing receptors. To unravel these intertwined effects of acidic pH on both the viscoelastic properties of the mucin-based mucus as well as the flagellar motors and chemo-receptors of the bacterium, we compared the motility of H. pylori in PGM with that in Brucella broth (BB10) at different pH values using phase contrast microscopy to track the motion of the bacteria. The results show that the distribution of swimming speeds and other characteristics of the bacteria trajectories exhibit pH-dependent differences in both media. The swimming speed exhibits a peak at pH 4 in BB10, and a less pronounced peak at a higher pH of 5 in PGM. At all pH values, the bacteria swam faster and had a longer net displacement in BB10 compared to PGM. While the bacteria were stuck in PGM gels at pH < 4, they swam at these acidic pH values in BB10, although with reduced speed. Decreasing pH leads to a decreased fraction of motile bacteria, with a decreased contribution of the faster swimmers to the distributions of speeds and net displacement of trajectories. The body rotation rate is weakly dependent on pH in BB10, whereas in PGM bacteria that are immobilized in the low pH gel are capable of mechano-sensing and rotate faster. Bacteria can be stuck in the gel in various ways, including the flagella getting entangled in the fibers of the gel or the cell body being stuck to the gel. Our results show that in BB10, swimming is optimized at pH4, reflecting the combined effects of pH sensing by anti-pH tactic receptors and impact on H+ pumping of flagellar motors, while the increase in viscosity of PGM with decreasing pH and gelation below pH 4 lead to further reduction in swimming speed, with optimal swimming at pH 5 and immobilization of bacteria below pH 4.

2.
Microorganisms ; 11(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36985208

ABSTRACT

Helicobacter spp., including the well-known human gastric pathogen H. pylori, can cause gastric diseases in humans and other mammals. They are Gram-negative bacteria that colonize the gastric epithelium and use their multiple flagella to move across the protective gastric mucus layer. The flagella of different Helicobacter spp. vary in their location and number. This review focuses on the swimming characteristics of different species with different flagellar architectures and cell shapes. All Helicobacter spp. use a run-reverse-reorient mechanism to swim in aqueous solutions, as well as in gastric mucin. Comparisons of different strains and mutants of H. pylori varying in cell shape and the number of flagella show that their swimming speed increases with an increasing number of flagella and is somewhat enhanced with a helical cell body shape. The swimming mechanism of H. suis, which has bipolar flagella, is more complex than that of unipolar H. pylori. H. suis exhibits multiple modes of flagellar orientation while swimming. The pH-dependent viscosity and gelation of gastric mucin significantly impact the motility of Helicobacter spp. In the absence of urea, these bacteria do not swim in mucin gel at pH < 4, even though their flagellar bundle rotates.

3.
Sci Rep ; 8(1): 14415, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30258065

ABSTRACT

The swimming strategies of unipolar flagellated bacteria are well known but little is known about how bipolar bacteria swim. Here we examine the motility of Helicobacter suis, a bipolar gastric-ulcer-causing bacterium that infects pigs and humans. Phase-contrast microscopy of unlabeled bacteria reveals flagella bundles in two conformations, extended away from the body (E) or flipped backwards and wrapped (W) around the body. We captured videos of the transition between these two states and observed three different swimming modes in broth: with one bundle rotating wrapped around the body and the other extended (EW), both extended (EE), and both wrapped (WW). Only EW and WW modes were seen in porcine gastric mucin. The EW mode displayed ballistic trajectories while the other two displayed superdiffusive random walk trajectories with slower swimming speeds. Separation into these two categories was also observed by tracking the mean square displacement of thousands of trajectories at lower magnification. Using the Method of Regularized Stokeslets we numerically calculate the swimming dynamics of these three different swimming modes and obtain good qualitative agreement with the measurements, including the decreased speed of the less frequent modes. Our results suggest that the extended bundle dominates the swimming dynamics.


Subject(s)
Flagella/physiology , Helicobacter heilmannii/physiology , Models, Biological , Animals , Humans , Swine
4.
Sci Rep ; 8(1): 9710, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29946149

ABSTRACT

We present particle tracking microrheology results on human mucins, isolated from normal surface and gland mucosa and one tumor sample, and examine the motility of Helicobacter pylori in these mucins. At 1.5% concentration human mucin solutions are purely viscous, with viscosity η (gland mucin) > η (surface mucin) > η (tumor mucin). In the presence of motile H. pylori bacteria, particle diffusion is enhanced, with diffusivity D+bac(tumor mucin) > D+bac(gland mucin) > D+bac(surface mucin). The surface and tumor mucin solutions exhibit an elastic response in the presence of bacteria. Taken together these results imply that particle diffusion and active swimming are coupled and impact the rheology of mucin solutions. Both J99 wild type (WT) and its isogenic ΔbabA/ΔsabA mutant swam well in broth or PGM solutions. However, the human mucins affected their motility differently, rendering them immotile in certain instances. The distribution of swimming speeds in human mucin solutions was broader with a large fraction of fast swimmers compared to PGM and broth. The bacteria swam fastest in the tumor mucin solution correlating with it having the lowest viscosity of all mucin solutions. Overall, these results suggest that mucins from different tissue locations and disease status differ in their microrheological properties and their effect on H. pylori motility.


Subject(s)
Mucins/chemistry , Mucins/pharmacology , Bacterial Physiological Phenomena/drug effects , Helicobacter Infections/microbiology , Helicobacter pylori/pathogenicity , Humans , Rheology , Viscosity
5.
Adv Drug Deliv Rev ; 124: 3-15, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28970050

ABSTRACT

In this review we discuss mucus, the viscoelastic secretion from goblet or mucous producing cells that lines the epithelial surfaces of all organs exposed to the external world. Mucus is a complex aqueous fluid that owes its viscoelastic, lubricating and hydration properties to the glycoprotein mucin combined with electrolytes, lipids and other smaller proteins. Electron microscopy of mucosal surfaces reveals a highly convoluted surface with a network of fibers and pores of varying sizes. The major structural and functional component, mucin is a complex glycoprotein coded by about 20 mucin genes which produce a protein backbone having multiple tandem repeats of Serine, Threonine (ST repeats) where oligosaccharides are covalently O-linked. The N- and C-terminals of this apoprotein contain other domains with little or no glycosylation but rich in cysteines leading to dimerization and further multimerization via SS bonds. The synthesis of this complex protein starts in the endoplasmic reticulum with the formation of the apoprotein and is further modified via glycosylation in the cis and medial Golgi and packaged into mucin granules via Ca2+ bridging of the negative charges on the oligosaccharide brush in the trans Golgi. The mucin granules fuse with the plasma membrane of the secretory cells and following activation by signaling molecules release Ca2+ and undergo a dramatic change in volume due to hydration of the highly negatively charged polymer brush leading to exocytosis from the cells and forming the mucus layer. The rheological properties of mucus and its active component mucin and its mucoadhesivity are briefly discussed in light of their importance to mucosal drug delivery.


Subject(s)
Mucus/chemistry , Mucus/metabolism , Animals , Humans , Mucus/cytology
6.
Sci Adv ; 2(11): e1601661, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28138539

ABSTRACT

It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion.


Subject(s)
Flagella/physiology , Helicobacter pylori/physiology , Movement/physiology , Biomechanical Phenomena , Brucella/cytology , Brucella/physiology , Helicobacter pylori/cytology , Models, Biological
7.
Mol Microbiol ; 99(1): 88-110, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26365708

ABSTRACT

The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight-rod morphology showed 7-21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 versus 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10-30% among strains. However, quantitative comparisons suggest resistive force theory underestimates the influence of cell body shape on speed for helical shaped bacteria.


Subject(s)
Adaptation, Physiological , Flagella/physiology , Helicobacter pylori/physiology , Locomotion , Cell Tracking , Culture Media/chemistry , Humans , Mucins/metabolism , Single-Cell Analysis
8.
Front Immunol ; 4: 310, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24133493

ABSTRACT

The bacterium Helicobacter pylori (H. pylori), has evolved to survive in the highly acidic environment of the stomach and colonize on the epithelial surface of the gastric mucosa. Its pathogenic effects are well known to cause gastritis, peptic ulcers, and gastric cancer. In order to infect the stomach and establish colonies on the mucus epithelial surface, the bacterium has to move across the gel-like gastric mucus lining of the stomach under acidic conditions. In this review we address the question of how the bacterium gets past the protective mucus barrier from a biophysical perspective. We begin by reviewing the molecular structure of gastric mucin and discuss the current state of understanding concerning mucin polymerization and low pH induced gelation. We then focus on the viscoelasticity of mucin in view of its relevance to the transport of particles and bacteria across mucus, the key first step in H. pylori infection. The second part of the review focuses on the motility of H. pylori in mucin solutions and gels, and how infection with H. pylori in turn impacts the viscoelastic properties of mucin. We present recent microscopic results tracking the motion of H. pylori in mucin solutions and gels. We then discuss how the biochemical strategy of urea hydrolysis required for survival in the acid is also relevant to the mechanism that enables flagella-driven swimming across the mucus gel layer. Other aspects of the influence of H. pylori infection such as, altering gastric mucin expression, its rate of production and its composition, and the influence of mucin on factors controlling H. pylori virulence and proliferation are briefly discussed with references to relevant literature.

9.
ACS Macro Lett ; 2(8): 745-748, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-35606962

ABSTRACT

Recently, Farjas and Roura (FR) have proposed a universal scaling law to describe nonisothermal crystallization kinetics based on a modification of the conventionally used Avrami model. In this letter, we apply the approach of Farjas and Roura to analyze the kinetics of an order-order phase transition in a diblock copolymer solution. We present an analysis of kinetics of the hexagonally packed cylinders (HEX) to gyroid transformation in polystyrene-b-polyisoprene (SI) diblock copolymer solutions in dimethyl phthalate using time-resolved small-angle X-ray scattering (SAXS) measurements. By shifting and scaling time in terms of the time at which the transformation rate is maximal, data for samples at two different concentrations at different ramp rates collapse onto the single universal curve predicted by Farjas and Roura. The activation energy for this process was estimated by fitting to the FR model. An estimate of the activation energy was also obtained by Avrami analysis of temperature jump experiments on the same sample. These two estimates differ by a factor of 2, suggesting that the two methods probe different stages of the phase transformation.

10.
J Biol Phys ; 38(4): 681-703, 2012 Sep.
Article in English | MEDLINE | ID: mdl-24615227

ABSTRACT

Mucin glycoproteins consist of tandem-repeating glycosylated regions flanked by non-repetitive protein domains with little glycosylation. These non-repetitive domains are involved in polymerization of mucin and play an important role in the pH-dependent gelation of gastric mucin, which is essential for protecting the stomach from autodigestion. We examine folding of the non-repetitive sequence of PGM-2X (242 amino acids) and the von Willebrand factor vWF-C1 domain (67 amino acids) at neutral and low pH using discrete molecular dynamics (DMD) in an implicit solvent combined with a four-bead peptide model. Using the same implicit solvent parameters, folding of both domains is simulated at neutral and low pH. In contrast to vWF-C1, PGM-2X folding is strongly affected by pH as indicated by changes in the contact order, radius of gyration, free-energy landscape, and the secondary structure. Whereas the free-energy landscape of vWF-C1 shows a single minimum at both neutral and low pH, the free-energy landscape of PGM-2X is characterized by multiple minima that are more numerous and shallower at low pH. Detailed structural analysis shows that PGM-2X partially unfolds at low pH. This partial unfolding is facilitated by the C-terminal region GLU236-PRO242, which loses contact with the rest of the domain due to effective "mean-field" repulsion among highly positively charged N- and C-terminal regions. Consequently, at low pH, hydrophobic amino acids are more exposed to the solvent. In vWF-C1, low pH induces some structural changes, including an increased exposure of CYS at position 67, but these changes are small compared to those found in PGM-2X. For PGM-2X, the DMD-derived average ß-strand propensity increases from 0.26 ± 0.01 at neutral pH to 0.38 ± 0.01 at low pH. For vWF-C1, the DMD-derived average ß-strand propensity is 0.32 ± 0.02 at neutral pH and 0.35 ± 0.02 at low pH. The DMD-derived structural information provides insight into pH-induced changes in the folding of two distinct mucin domains and suggests plausible mechanisms of the aggregation/gelation of mucin.


Subject(s)
Gastric Mucins/chemistry , Molecular Dynamics Simulation , Protein Folding , Amino Acid Sequence , Animals , Disulfides/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Protein Structure, Tertiary , Protein Unfolding , Solvents/chemistry , Swine
11.
J Chem Phys ; 133(8): 084905, 2010 Aug 28.
Article in English | MEDLINE | ID: mdl-20815592

ABSTRACT

The kinetics of the transformation from the hexagonal packed cylinder (hex) phase to the face-centered-cubic (fcc) phase was simulated using Brownian dynamics for an ABA triblock copolymer in a selective solvent for the A block. The kinetics was obtained by instantaneously changing either the temperature of the system or the well-depth of the Lennard-Jones potential. Detailed analysis showed that the transformation occurred via a rippling mechanism. The simulation results indicated that the order-order transformation was a nucleation and growth process when the temperature of the system instantly jumped from 0.8 to 0.5. The time evolution of the structure factor obtained by Fourier transformation showed that the peak intensities of the hex and fcc phases could be fit well by an Avrami equation.

12.
Proc Natl Acad Sci U S A ; 106(34): 14321-6, 2009 Aug 25.
Article in English | MEDLINE | ID: mdl-19706518

ABSTRACT

The ulcer-causing gastric pathogen Helicobacter pylori is the only bacterium known to colonize the harsh acidic environment of the human stomach. H. pylori survives in acidic conditions by producing urease, which catalyzes hydrolysis of urea to yield ammonia thus elevating the pH of its environment. However, the manner in which H. pylori is able to swim through the viscoelastic mucus gel that coats the stomach wall remains poorly understood. Previous rheology studies on gastric mucin, the key viscoelastic component of gastric mucus, indicate that the rheology of this material is pH dependent, transitioning from a viscous solution at neutral pH to a gel in acidic conditions. Bulk rheology measurements on porcine gastric mucin (PGM) show that pH elevation by H. pylori induces a dramatic decrease in viscoelastic moduli. Microscopy studies of the motility of H. pylori in gastric mucin at acidic and neutral pH in the absence of urea show that the bacteria swim freely at high pH, and are strongly constrained at low pH. By using two-photon fluorescence microscopy to image the bacterial motility in an initially low pH mucin gel with urea present we show that the gain of translational motility by bacteria is directly correlated with a rise in pH indicated by 2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), a pH sensitive fluorescent dye. This study indicates that the helicoidal-shaped H. pylori does not bore its way through the mucus gel like a screw through a cork as has previously been suggested, but instead achieves motility by altering the rheological properties of its environment.


Subject(s)
Gastric Mucins/metabolism , Gastric Mucosa/microbiology , Helicobacter pylori/physiology , Mucus/microbiology , Animals , Bacterial Proteins/metabolism , Elasticity , Fluoresceins/chemistry , Gastric Mucins/chemistry , Gastric Mucosa/metabolism , Helicobacter pylori/enzymology , Hydrogen-Ion Concentration , Microscopy, Fluorescence , Mucus/metabolism , Rheology , Swine , Urea/chemistry , Urea/metabolism , Urease/metabolism , Viscosity
13.
Biomacromolecules ; 8(5): 1580-6, 2007 May.
Article in English | MEDLINE | ID: mdl-17402780

ABSTRACT

Gastric mucin, a high molecular weight glycoprotein, is responsible for providing the gel-forming properties and protective function of the gastric mucus layer. Bulk rheology measurements in the linear viscoelastic regime show that gastric mucin undergoes a pH-dependent sol-gel transition from a viscoelastic solution at neutral pH to a soft viscoelastic gel in acidic conditions, with the transition occurring near pH 4. In addition to pH-dependent gelation behavior in this system, further rheological studies under nonlinear deformations reveal shear thinning and an apparent yield stress in this material which are also highly influenced by pH.


Subject(s)
Gastric Mucins/chemistry , Phase Transition , Animals , Gels/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Rheology , Swine/metabolism
14.
Appl Opt ; 46(10): 1760-9, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17356619

ABSTRACT

We have developed a novel optical method for observing submicrometer intracellular structures in living cells, which is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light-scattering spectroscopy. CLASS microscopy requires no exogenous labels and is capable of imaging and continuously monitoring individual viable cells, enabling the observation of cell and organelle functioning at scales of the order of 100 nm.


Subject(s)
Image Enhancement/instrumentation , Microscopy, Confocal/instrumentation , Spectrum Analysis/instrumentation , Tomography, Optical Coherence/instrumentation , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Image Enhancement/methods , Microscopy, Confocal/methods , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Spectrum Analysis/methods , Tomography, Optical Coherence/methods
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 1): 061803, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16906856

ABSTRACT

Time-resolved small-angle x-ray scattering measurements reveal that a long-lived intermediate bcc state forms when a poly(styrene-b-isoprene) diblock copolymer solution in an isoprene selective solvent is rapidly cooled from the disordered micellar fluid at high temperature to an equilibrium fcc state. The kinetics of the epitaxial growth of the [111] fcc peak from the [110] bcc peak was obtained by fitting the scattering data to a simple model of the transformation. The growth of the [111] fcc peak agrees with the Avrami model of nucleation and growth kinetics with an exponent n=1.4, as does the initial decay of the [110] bcc peak, with an exponent n=1.3. The data were also found to be in good agreement with the Cahn model of grain boundary nucleation and growth.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 1): 011410, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16486143

ABSTRACT

We have used small-angle light-scattering (SALS), microscopy, and measurements to study structural changes produced in unbuffered agarose gels as ions migrate under applied electric fields (3-20 V/cm). Anisotropic, bowtielike, light-scattering patterns were observed, whose development occurred more quickly at higher fields. The horizontal lobes were more pronounced at higher polymer concentration. Analysis of the SALS data with a simple model of scattering from anisotropic rods in an electric field is consistent with anisotropic rodlike domains on the order of 10-15 microm in length, which align perpendicular to the electric field. The anisotropic domains in the gel reach almost the same level of orientation, regardless of the field strength. Microscope imaging revealed anisotropic domains on the same length scale, also aligned perpendicular to the field. Profiles of pH variation across the gel, measured by video photography, indicate that the anisotropic patterns appear when the H+ and OH- ions, migrating in opposite directions, meet. Calculations of pH profiles using a model based on electrodiffusion reproduce several features of measured pH profiles, including the power-law dependence on the electric field of the time at which the oppositely charged fronts meet. Ions migrating from both ends of the gel produce pH changes that are correlated with macroscopic shrinking and orientation of the gel.


Subject(s)
Biophysics/methods , Electrolysis/methods , Gels/chemistry , Sepharose/chemistry , Anisotropy , Hydrogen-Ion Concentration , Light , Polymers/chemistry , Protons , Scattering, Radiation , Time Factors
17.
Biomacromolecules ; 6(6): 3458-66, 2005.
Article in English | MEDLINE | ID: mdl-16283779

ABSTRACT

Mammalian gastric mucin, at high concentration, is known to form a gel at low pH, behavior essential to the protection of the stomach from auto-digestion. Atomic force microscopy (AFM) measurements of dilute solutions of porcine gastric mucin in an aqueous environment in the pH range 6-2 provide a direct visualization of extended fiberlike molecules at pH 6 that aggregate at pH 4 and below forming well-defined clusters at pH 2. The clusters consist of 10 or less molecules. AFM images of mucin at high concentration at pH 2 reveal clusters similar to those seen in the dilute solutions at low pH. We also imaged human gastric mucus revealing a network having a "pearl necklace" structure. The "pearls" are similar in size to the clusters found in the purified porcine gastric mucin gels. AFM images of deglycosylated mucin reveal that the deglycosylated portions of the molecule re-fold into compact, globular structures suggesting that the oligosaccharide chains are important in maintaining the extended conformation of mucin. However, the oligosaccharides do not appear to be directly involved in the aggregation at low pH, as clusters of similar size are observed at pH 2 in both native and deglycosylated mucin.


Subject(s)
Biochemistry/methods , Gastric Mucins/chemistry , Gastric Mucosa/ultrastructure , Animals , Gastric Mucosa/metabolism , Glycosylation , Humans , Hydrogen-Ion Concentration , Imaging, Three-Dimensional , Macromolecular Substances , Microscopy, Atomic Force , Molecular Conformation , Molecular Weight , Protein Binding , Protein Conformation , Solutions , Stomach/ultrastructure , Swine , Viscosity
18.
Biomacromolecules ; 6(3): 1329-33, 2005.
Article in English | MEDLINE | ID: mdl-15877349

ABSTRACT

Gastric mucin is a glycoprotein known to undergo a pH-dependent sol-gel transition that is crucial to the protective function of the gastric mucus layer in mammalian stomachs. We present microscope-based dynamic light scattering data on porcine gastric mucin at pH 6 (solution) and pH 2 (gel) with and without the presence of tracer particles. The data provide a measurement of the microscale viscosity and the shear elastic modulus as well as an estimate of the mesh size of the gel formed at pH 2. We observe that the microscale viscosity in the gel is about 100-fold lower than its macroscopic viscosity, suggesting that large pores open up in the gel reducing frictional effects. The data presented here help to characterize physiologically relevant viscoelastic properties of an important biological macromolecule and may also serve to shed light on diffusive motion of small particles in the complex heterogeneous environment of a polymer gel network.


Subject(s)
Gastric Mucins/analysis , Gastric Mucins/chemistry , Animals , Elasticity , Swine , Time Factors , Viscosity
19.
Biomacromolecules ; 5(2): 269-75, 2004.
Article in English | MEDLINE | ID: mdl-15002984

ABSTRACT

We utilized fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) to examine the role of gallbladder mucin (GBM) in promoting the aggregation and/or fusion of cholesterol enriched vesicles. By fluorescent labeling either the vesicle or the mucin, we could examine the change in vesicle size as well as changes in mucin's diffusion constant. Both FRAP and FCS show that GBM has a profound effect in inducing vesicles to aggregate/fuse, particularly after overnight incubation. GBM mucin domains (either protease digested or reduced GBM) are not as effective as native GBM. Intact GBM alone was able to shorten crystal appearance time and increase the number of crystals nucleated by polarized optical microscopy. In summary, our findings would suggest that both glycosylated and nonglycosylated domains of GBM are involved in early aggregation of cholesterol enriched vesicles but that this effect is reversible in the absence of nonglycosylated domains.


Subject(s)
Cholesterol/metabolism , Microspheres , Mucins/metabolism , Animals , Bile/chemistry , Bile/metabolism , Cattle , Cholesterol/chemistry , Crystallization , Gallbladder/chemistry , Gallbladder/metabolism , Microscopy, Fluorescence , Mucins/chemistry , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...