Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(3): e25026, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38327431

ABSTRACT

Polymeric materials are constantly exposed to aggressive environments, negatively impacting their mechanical and chemical properties. In salt, acid, or alkaline solutions, polymer materials degrade due to surface flaws, microcracks, or other irregularities. For the first time, this study considers the behaviour of coconut powder/coir-reinforced synthetic LDPE hybrid composite immersed in an aggressive (acidic) medium for 15, 30 and 45 days. The structural, mechanical, and frictional behaviour of the developed coir/coconut husk powder/LDPE hybrid composites were measured after ageing in hydrochloric acid (HCl) as potential materials for oil and gas applications. From the XRD patterns, the prominent reflections in the control samples increased with the acid ageing days, while less prominent reflections characterized the hybrid composites. The hardness of the reinforced samples immersed for 30 and 45 days (30B and 45A) showed the highest values of 0.28 Hv, while the control samples immersed for 15 days had the least hardness. The reinforced samples immersed for 15 and 30 days (15B and 30B) showed the lowest and highest fracture toughness, respectively. The control samples were observed to absorb little water after immersion for 144 h. The result showed that although the reinforced hybrid composites showed better mechanical properties, with an increase in the days of immersion in an aggressive medium, the properties became compromised compared to the un-reinforced samples. Hence, the applications of the produced reinforced polymers in the oil and gas industries may be limited.

2.
ACS Omega ; 5(14): 7751-7761, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32309683

ABSTRACT

Zirconia particles are generated into a nitrile rubber (NBR) matrix via a solution sol-gel method in a controlled manner. Formation of zirconia particles from their precursor (zirconium(IV) propoxide) occurs under optimized reaction conditions. As a result, the nanoparticles are embedded and well dispersed in the NBR matrix that results in a remarkable improvement in mechanical and thermal properties of the composite. Such reinforcement is not realized when the composites are prepared following the conventional technique of filler loading by physical mixing, although the filler content remains the same. Use of a surface active coupling agent TESPT (bis-(3-triethoxysilylpropyl) tetrasulfide) in the reactive sol-gel system is found to further boost the mechanical performance of the composites. In order to ensure the practical application of the developed composites, a series of studies have been performed that consist of dynamic performance, swelling, thermal degradation, and resistance to oil, ozone, and abrasion. Analysis of the results reveals that in situ zirconia could be an excellent filler for the NBR composites to withstand in a harsh and adverse environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...