Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38792253

ABSTRACT

Preparing high-performance oxygen evolution reaction (OER) catalysts with low precious metal loadings for water electrolysis applications (e.g., for green hydrogen production) is challenging and requires electrically conductive, high-surface-area, and stable support materials. Combining the properties of stable TiO2 with those of active iridium oxide, we synthesized highly active electrodes for OER in acidic media. TiO2 powders (both commercially available Degussa P-25® and hydrothermally prepared in the laboratory from TiOSO4, either as received/prepared or following ammonolysis to be converted to titania black), were decorated with IrO2 by UV photodeposition from Ir(III) aqueous solutions of varied methanol scavenger concentrations. TEM, EDS, FESEM, XPS, and XRD measurements demonstrate that the optimized version of the photodeposition preparation method (i.e., with no added methanol) leads to direct deposition of well-dispersed IrO2 nanoparticles. The electroactive surface area and electrocatalytic performance towards OER of these catalysts have been evaluated by cyclic voltammetry (CV), Linear Sweep Voltammetry (LSV), and Electrochemical Impedance Spectroscopy (EIS) in 0.1 M HClO4 solutions. All TiO2-based catalysts exhibited better mass-specific (as well as intrinsic) OER activity than commercial unsupported IrO2, with the best of them (IrO2 on Degussa P-25® ΤiO2 and laboratory-made TiO2 black) showing 100 mAmgIr-1 at an overpotential of η = 243 mV. Chronoamperometry (CA) experiments also proved good medium-term stability of the optimum IrO2/TiO2 electrodes during OER.

2.
Molecules ; 28(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570796

ABSTRACT

Polymer electrolyte membrane (PEM) water electrolyzers suffer mainly from slow kinetics regarding the oxygen evolution reaction (OER). Noble metal oxides, like IrO2 and RuO2, are generally more active for OER than metal electrodes, exhibiting low anodic overpotentials and high catalytic activity. However, issues like electrocatalyst stability under continuous operation and cost minimization through a reduction in the catalyst loading are of great importance to the research community. In this study, unsupported IrO2 of various particle sizes (different calcination temperatures) were evaluated for the OER and as anode electrodes for PEM water electrolyzers. The electrocatalysts were synthesized by the modified Adams method, and the effect of calcination temperature on the properties of IrO2 electrocatalysts is investigated. Physicochemical characterization was conducted using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurement, high-resolution transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. For the electrochemical performance of synthesized electrocatalysts in the OER, cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were conducted in a typical three-cell electrode configuration, using glassy carbon as the working electrode, which the synthesized electrocatalysts were cast on in a 0.5 M H2SO4 solution. The materials, as anode PEM water electrolysis electrodes, were further evaluated in a typical electrolytic cell using a Nafion®115 membrane as the electrolyte and Pt/C as the cathode electrocatalyst. The IrO2 electrocatalyst calcined at 400 °C shows high crystallinity with a 1.24 nm particle size, a high specific surface area (185 m2 g-1), and a high activity of 177 mA cm-2 at 1.8 V for PEM water electrolysis.

3.
Environ Sci Pollut Res Int ; 30(4): 8722-8731, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35381928

ABSTRACT

Electrochemical oxidation of trivalent chromium from leather tanning mud waste leachates (containing ca 6 g.L-1 Cr(III)) to its hexavalent form was carried out using a PbOx/Pb anode electrode in a prototype small (0.4 L) cylindrical batch electrochemical reactor. The PbOx/Pb anode was prepared by electrochemical anodization at constant current (75 mA cm-2 for 30 min) in a sulfuric acid solution and characterized by the cyclic voltammetry technique to investigate the effect of pH on the process. It was found that at pH = 3, Cr(III) oxidation prevails over the competing water oxidation-oxygen evolution reaction (OER), hence increasing the efficiency of the process. A detailed study of pH (0-3), current density (12-24 mA cm-2), and cell type (divided-undivided) effects on bulk electrolysis of Cr(III) leachates in the batch prototype reactor resulted in process optimization. At pH = 3, 12 mA cm-2 and a cathode inserted in a porous diaphragm envelope, nearly 70% conversion was achieved at a nearly 60% current efficiency, among the highest in the previously reported literature. The method (further optimized with an ion-selective membrane separator) could offer an attractive route for tannery Cr(III) conversion to Cr(VI) for reuse as an etchant or electroplating agent.


Subject(s)
Chromium , Lead , Chromium/chemistry , Industrial Waste , Tanning , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...