Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 96(6): e29755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38922896

ABSTRACT

Throughout the COVID-19 pandemic, rhinovirus (RV) remained notable persistence, maintaining its presence while other seasonal respiratory viruses were largely suppressed by pandemic restrictions during national lockdowns. This research explores the epidemiological dynamics of RV infections among pediatric populations on Hainan Island, China, specifically focusing on the impact before and after the zero-COVID policy was lifted. From January 2021 to December 2023, 19 680 samples were collected from pediatric patients hospitalized with acute lower respiratory tract infections (ARTIs) at the Hainan Maternal and Child Health Hospital. The infection of RV was detected by tNGS. RV species and subtypes were identified in 32 RV-positive samples representing diverse time points by analyzing the VP4/VP2 partial regions. Among the 19 680 pediatric inpatients with ARTIs analyzed, 21.55% were found to be positive for RV infection, with notable peaks observed in April 2021 and November 2022. A gradual annual decline in RV infections was observed, alongside a seasonal pattern of higher prevalence during the colder months. The highest proportion of RV infections was observed in the 0-1-year age group. Phylogenetic analysis on 32 samples indicated a trend from RV-A to RV-C in 2022. This observation suggests potential evolving dynamics within the RV species although further studies are needed due to the limited sample size. The research emphasizes the necessity for ongoing surveillance and targeted management, particularly for populations highly susceptible to severe illnesses caused by RV infections.


Subject(s)
COVID-19 , Genetic Variation , Phylogeny , Picornaviridae Infections , Respiratory Tract Infections , Rhinovirus , Humans , Rhinovirus/genetics , Rhinovirus/classification , Rhinovirus/isolation & purification , China/epidemiology , Infant , Child, Preschool , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Child , Female , Male , COVID-19/epidemiology , COVID-19/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Infant, Newborn , Seasons , Adolescent , Prevalence , Child, Hospitalized/statistics & numerical data , SARS-CoV-2/genetics , Hospitalization/statistics & numerical data
2.
J Biomol Struct Dyn ; 41(20): 11137-11147, 2023 12.
Article in English | MEDLINE | ID: mdl-37211826

ABSTRACT

Two different systems of bovine serum albumin (BSA) were used for multiple spectroscopic and computational studies to determine interaction of BSA and atropine (Atrop), that is, BSA-Atrop system and Atrop-loaded chitosan nanoparticles (Atrop@CS NPs), that is, BSA-Atrop@CS NPs system. The study suggests that BSA-Atrop system and BSA-Atrop@CS NPs system involve non-fluorescent complexes of Ksv = 3.2 × 103 Lmol-1 and 3.1 × 104 Lmol-1, kq = 3.2 × 1011 Lmol-1 s-1 and 3.1 × 1012 Lmol-1 s-1, the binding constant Kb = 1.4 × 103 Lmol-1, 2.0 × 102 Lmol-1, respectively, and number of binding sites n ∼ 1 for both the systems. The negligible conformational changes induced in BSA were also observed. Synchronous fluorescence spectroscopic study revealed that more quenching occurred in intrinsic fluorescence of tryptophan (Trp, W) than that in tyrosine residue (Tyr, Y). UV-vis spectroscopic study verified the presence of static quenching from the presence of BSA-Atrop and BSA-Atrop@CS NPs complexes. CD spectra confirmed the conformational changes induced in BSA upon increment of concentrations of Atrop and Atrop@CS NPs separately into the constant concentration of BSA. The coherent observations from various spectroscopic studies were in agreement with those of computational study, showing BSA-Atrop complex formation and other related details. The hydrogen bonds (H-bonds), van der Walls (vdW) interactions and π-type of interactions were mainly involved in stabilization of the formed BSA-Atrop complex.Communicated by Ramaswamy H. Sarma.


Subject(s)
Chitosan , Nanoparticles , Serum Albumin, Bovine/chemistry , Chitosan/metabolism , Protein Binding , Spectrometry, Fluorescence/methods , Binding Sites , Atropine Derivatives , Thermodynamics , Spectrophotometry, Ultraviolet , Circular Dichroism
SELECTION OF CITATIONS
SEARCH DETAIL
...