Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Rev Gastroenterol Hepatol ; 20(12): 784-796, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37626258

ABSTRACT

Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Hormones , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Gastrointestinal Hormones/metabolism , Gastrointestinal Tract/metabolism , Obesity/metabolism , Intestines
2.
Nat Rev Endocrinol ; 19(5): 255, 2023 May.
Article in English | MEDLINE | ID: mdl-36864152
4.
Commun Biol ; 5(1): 238, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304577

ABSTRACT

Dysregulated glucagon secretion from pancreatic alpha-cells is a key feature of type-1 and type-2 diabetes (T1D and T2D), yet our mechanistic understanding of alpha-cell function is underdeveloped relative to insulin-secreting beta-cells. Here we show that the enzyme acetyl-CoA-carboxylase 1 (ACC1), which couples glucose metabolism to lipogenesis, plays a key role in the regulation of glucagon secretion. Pharmacological inhibition of ACC1 in mouse islets or αTC9 cells impaired glucagon secretion at low glucose (1 mmol/l). Likewise, deletion of ACC1 in alpha-cells in mice reduced glucagon secretion at low glucose in isolated islets, and in response to fasting or insulin-induced hypoglycaemia in vivo. Electrophysiological recordings identified impaired KATP channel activity and P/Q- and L-type calcium currents in alpha-cells lacking ACC1, explaining the loss of glucose-sensing. ACC-dependent alterations in S-acylation of the KATP channel subunit, Kir6.2, were identified by acyl-biotin exchange assays. Histological analysis identified that loss of ACC1 caused a reduction in alpha-cell area of the pancreas, glucagon content and individual alpha-cell size, further impairing secretory capacity. Loss of ACC1 also reduced the release of glucagon-like peptide 1 (GLP-1) in primary gastrointestinal crypts. Together, these data reveal a role for the ACC1-coupled pathway in proglucagon-expressing nutrient-responsive endocrine cell function and systemic glucose homeostasis.


Subject(s)
Glucagon-Secreting Cells , Insulin-Secreting Cells , Acetyl Coenzyme A/metabolism , Acetyl-CoA Carboxylase/metabolism , Animals , Glucagon , Glucagon-Secreting Cells/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Mice
5.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: mdl-34264866

ABSTRACT

The α-ketoglutarate-dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is an HIF target that uses molecular oxygen to hydroxylate peptidyl prolyl residues. Although PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about the effects of this highly conserved enzyme in insulin-secreting ß cells in vivo. Here, we show that the deletion of PHD3 specifically in ß cells (ßPHD3KO) was associated with impaired glucose homeostasis in mice fed a high-fat diet. In the early stages of dietary fat excess, ßPHD3KO islets energetically rewired, leading to defects in the management of pyruvate fate and a shift from glycolysis to increased fatty acid oxidation (FAO). However, under more prolonged metabolic stress, this switch to preferential FAO in ßPHD3KO islets was associated with impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes, and insulin secretion. Thus, PHD3 might be a pivotal component of the ß cell glucose metabolism machinery in mice by suppressing the use of fatty acids as a primary fuel source during the early phases of metabolic stress.


Subject(s)
Fatty Acids/adverse effects , Glucose/metabolism , Insulin Resistance , Insulin-Secreting Cells/enzymology , Procollagen-Proline Dioxygenase/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Glycolysis , Humans , Insulin Secretion , Lipid Metabolism , Male , Mice , Mice, Knockout , Oxidation-Reduction , Procollagen-Proline Dioxygenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...