Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 10: 856531, 2022.
Article in English | MEDLINE | ID: mdl-35433648

ABSTRACT

Indentation gonioscopy is commonly used in the clinic to evaluate peripheral anterior synechia (PAS) of angle closure glaucoma (ACG). The examination requires contacting with the cornea, resulting in an uncomfortable feeling for patients, and it only provides qualitative outcomes which may be affected by subjective judgment of the clinicians. Previous studies had reported to identify the presence of PAS by measuring the changes of morphological parameters of the anterior chamber angle (ACA) under the pupillary light reflex, by anterior segment optical coherence tomography (AS-OCT). However, this method was invalid for some subjects who had low sensitiveness to light. This article describes an air-puff dynamic anterior segment optical coherence tomography (DAS-OCT) system that can evaluate the presence of PAS in a non-contact approach. The peripheral cornea is deformed by an air puff jetted from the DAS-OCT, causing a transfer of force to the ACA, just as how indentation gonioscopy works. The dynamic changes of the ACA before and after the air puff are recorded by OCT. Ten eyes of normal subjects were enrolled in this study to validate the repeatability and availability of the measurements. Then, ten samples of the ACA from five subjects with ACG were recruited and were assigned into two groups, the non PAS group (NPAS) and PAS group, according to the results of gonioscopy. The ACA structural parameters including the angle opening distance at 750 µm to the scleral spur (AOD750) and the trabecular-iris space area at 750 µm anterior to the scleral spur (TISA750) were then calculated automatically by a custom-written algorithm. The intraclass correlation coefficient (ICC) of measured parameters was all above 0.85 for normal subjects, exhibiting good repeatability. For patients, both parameters showed significant differences between the two groups after the air puff, while no differences were observed before the air puff. AOD750dif and TISA750dif between two groups showed more significant differences, indicating that they could be used as indicators to identify the presence of PAS. In conclusion, the DAS-OCT system proposed in this study is demonstrated effective to identify the presence of PAS by measuring the changes of the ACA via a noncontact approach. It shows great potential for applications in guidance for diagnosis of angle closure glaucoma.

2.
J Biophotonics ; 14(9): e202100116, 2021 09.
Article in English | MEDLINE | ID: mdl-34051066

ABSTRACT

Quantifying the mechanical properties of the iris can offer valuable insights into the pathophysiology of primary angle closure glaucoma. However, current techniques for iris elastography remain ex vivo with limited clinical applications. This article describes a proposition for a non-contact and non-invasive air-puff optical coherence elastography (OCE) system that can evaluate iris elasticity in vivo. Ten eyes recruited from seven subjects underwent OCE imaging acquisition under three different illumination conditions. The Young's modulus of each eye was detected and shown to be inversely proportional to the iris length, indicating a relationship between mechanical properties and morphology of the iris. With its noninvasive and high-resolution features, this air-puff system shows great potential for applications in clinical ophthalmology.


Subject(s)
Elasticity Imaging Techniques , Elastic Modulus , Elasticity , Humans , Iris/diagnostic imaging , Tomography, Optical Coherence
3.
Graefes Arch Clin Exp Ophthalmol ; 259(9): 2753-2759, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33974133

ABSTRACT

PURPOSE: To generate a model that evaluates the presence and extent of peripheral anterior synechia (PAS) based on anterior segment optical coherence tomography (AS-OCT). METHODS: The extent of PAS involvement in the eyes of patients with angle closure was assessed by indentation gonioscopy, and the part of non-PAS and PAS were assigned into two groups (NPAS and PAS). Anterior chamber angles were then imaged by AS-OCT with light-emitting diode (LED) irradiation directly into the pupils, leading to pupillary constriction and increasing anterior chamber angle width. Parameters including the angle opening distance at 750 µm anterior to the scleral spur (AOD750) and trabecular-iris space area at 750 µm anterior to the scleral spur (TISA750) were then obtained. The differences before and after LED irradiation of AOD750 and TISA750 were calculated and used to generate a PAS model based on binary logistic regression. Validation data were then tested. RESULTS: A total of 258 AS-OCT images in 14 eyes were assigned to the modeling data, and 120 were assigned to the validation data. There were no differences in AOD750 and TISA750 in the dark between NPAS and PAS (PAOD750 = 0.258, PTISA750 = 0.486), whereas after LED light exposure, TISA750light was larger in NPAS than in PAS (P = 0.047). The light-dark differences of both parameters showed significant differences between the two groups (PAOD750dif = 0.019, PTISA750dif < 0.001). The area under the curve of the model performance was 0.841, and the overall correct rate was 80.8% based on the validation data. CONCLUSIONS: The present study demonstrates that the AS-OCT-based PAS model could be useful in the identifying of the presence of synechial angle closure and evaluating the extent of PAS in a single eye.


Subject(s)
Glaucoma, Angle-Closure , Tomography, Optical Coherence , Anterior Chamber/diagnostic imaging , Anterior Eye Segment/diagnostic imaging , Glaucoma, Angle-Closure/diagnosis , Gonioscopy , Humans , Intraocular Pressure , Iris
4.
J Biophotonics ; 13(8): e202000104, 2020 08.
Article in English | MEDLINE | ID: mdl-32368840

ABSTRACT

Current elastography techniques are limited in application to accurately assess spatially resolved corneal elasticity in vivo for human eyes. The air-puff optical coherence elastography (OCE) with an eye motion artifacts correction algorithm is developed to distinguish the in vivo cornea vibration from the eye motion and visualize the Lamb wave propagation clearly in healthy subjects. Based on the Lamb wave model, the phase velocity dispersion curve in the high-frequency is calculated to obtain spatially resolved corneal elasticity accurately with high repeatability. It is found that the corneal elasticity has regional variations and is correlated with intraocular pressure, which suggests that the method has the potential to provide noninvasive measurement of spatially resolved corneal elasticity in clinical practice.


Subject(s)
Elasticity Imaging Techniques , Biomechanical Phenomena , Cornea/diagnostic imaging , Elasticity , Humans , Tomography, Optical Coherence , Tonometry, Ocular
SELECTION OF CITATIONS
SEARCH DETAIL
...