Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(30): e202404067, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38729916

ABSTRACT

Conventional photovoltaic (PV)-photodetectors are hard to detect fainted signals, while photomultiplication (PM)-capable devices indispensable for detecting weak light and are prone to degrade under strong light illumination and large bias, and it is urgent to realize highly efficient integrated detecting system with both PM and PV operation modes. In this work, one lead-free Cs3Cu2I5 nanocrystals with self-trapping exciton nature was introduced as interfacial layer adjacent to bulk and layer-by-layer heterojunction structure, and corresponding organic photodetectors with bias-switchable dual modes are demonstrated. The fabricated device exhibits low operating bias (0 V for PV mode and 0.8 V for PM mode), high specific detectivity (~1013 Jones), fast response speed as low as 1.59 µs, large bandwidth over 0.2 MHz and long-term operational stability last for 4 months in ambient condition. This synergy strategy also validated in different materials and device architectures, providing a convenient and scalable production process to develop highly efficient bias-switchable multi-functional organic optoelectrical applications.

2.
Adv Mater ; 36(18): e2311524, 2024 May.
Article in English | MEDLINE | ID: mdl-38275007

ABSTRACT

Neuromorphic visual sensors (NVS) based on photonic synapses hold a significant promise to emulate the human visual system. However, current photonic synapses rely on exquisite engineering of the complex heterogeneous interface to realize learning and memory functions, resulting in high fabrication cost, reduced reliability, high energy consumption and uncompact architecture, severely limiting the up-scaled manufacture, and on-chip integration. Here a photo-memory fundamental based on ion-exciton coupling is innovated to simplify synaptic structure and minimize energy consumption. Due to the intrinsic organic/inorganic interface within the crystal, the photodetector based on monolithic 2D perovskite exhibits a persistent photocurrent lasting about 90 s, enabling versatile synaptic functions. The electrical power consumption per synaptic event is estimated to be≈1.45 × 10-16 J, one order of magnitude lower than that in a natural biological system. Proof-of-concept image preprocessing using the neuromorphic vision sensors enabled by photonic synapse demonstrates 4 times enhancement of classification accuracy. Furthermore, getting rid of the artificial neural network, an expectation-based thresholding model is put forward to mimic the human visual system for facial recognition. This conceptual device unveils a new mechanism to simplify synaptic structure, promising the transformation of the NVS and fostering the emergence of next generation neural networks.


Subject(s)
Calcium Compounds , Neural Networks, Computer , Oxides , Synapses , Titanium , Oxides/chemistry , Titanium/chemistry , Synapses/physiology , Calcium Compounds/chemistry , Humans , Photons , Vision, Ocular/physiology
3.
Rep Prog Phys ; 85(9)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35763940

ABSTRACT

Metal halide perovskites are widely used in optoelectronic devices, including solar cells, photodetectors, and light-emitting diodes. Defects in this class of low-temperature solution-processed semiconductors play significant roles in the optoelectronic properties and performance of devices based on these semiconductors. Investigating the defect properties provides not only insight into the origin of the outstanding performance of perovskite optoelectronic devices but also guidance for further improvement of performance. Defects in perovskites have been intensely studied. Here, we review the progress in defect-related physics and techniques for perovskites. We survey the theoretical and computational results of the origin and properties of defects in perovskites. The underlying mechanisms, functions, advantages, and limitations of trap state characterization techniques are discussed. We introduce the effect of defects on the performance of perovskite optoelectronic devices, followed by a discussion of the mechanism of defect treatment. Finally, we summarize and present key challenges and opportunities of defects and their role in the further development of perovskite optoelectronic devices.

4.
Nat Commun ; 12(1): 361, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33441549

ABSTRACT

Bright and efficient blue emission is key to further development of metal halide perovskite light-emitting diodes. Although modifying bromide/chloride composition is straightforward to achieve blue emission, practical implementation of this strategy has been challenging due to poor colour stability and severe photoluminescence quenching. Both detrimental effects become increasingly prominent in perovskites with the high chloride content needed to produce blue emission. Here, we solve these critical challenges in mixed halide perovskites and demonstrate spectrally stable blue perovskite light-emitting diodes over a wide range of emission wavelengths from 490 to 451 nanometres. The emission colour is directly tuned by modifying the halide composition. Particularly, our blue and deep-blue light-emitting diodes based on three-dimensional perovskites show high EQE values of 11.0% and 5.5% with emission peaks at 477 and 467 nm, respectively. These achievements are enabled by a vapour-assisted crystallization technique, which largely mitigates local compositional heterogeneity and ion migration.

5.
Small ; 16(52): e2005626, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33283445

ABSTRACT

For next-generation Internet-of-Everything applications, for example, artificial-neural-network image sensors, artificial retina, visible light communication, on-chip light interconnection, and flexible devices, etc., high-performance microscale photodetectors are in urgent demands. 2D material (2DM) photodetectors have been researched and demonstrated impressive performances. However, they have not met the demands in filterless narrowband photoresponse, wide linear dynamic range (LDR), ultralow dark current, and large on/off ratio, which are key performances for these applications. 2D Ruddlesden-Popper perovskites (2D-RPPs) are recently highlighted photovoltaic and optoelectronic materials. Embedding ultrathin 2D-RPPs into 2DM photodetectors holds potentials to improve these performances. Herein, a single-crystalline ultrathin (PEA)2 PbI4 is integrated into a vertical-stacked graphene-(PEA)2 PbI4 -graphene micro photoconductor (V-PEPI-PC). V-PEPI-PC exhibits narrowband photoresponses at 517 nm with a full-width-at-half-maximum of 15 nm and a wide LDR of 122 dB. Due to the multiple quantum wells in (PEA)2 PbI4 , V-PEPI-PC demonstrates an ultralow dark current of 1.1 × 10-14 A (44 pA mm-2 ), a high specific detectivity of 1.2 × 1013 Jones, and a high on/off ratio of 1.6 × 106 . Owing to the short vertical channel, V-PEPI-PC shows a fast response rise time of 486 µs. Therefore, the vertical-stacked photodetectors based on hybrid 2D-RPPs and 2DMs may have great potentials in future optoelectronics.

6.
Nat Electron ; 3(3): 156-164, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32226921

ABSTRACT

The integration of optical signal generation and reception into one device - and thus allowing bidirectional optical signal transmission between two identical devices - is of value in the development of miniaturized and integrated optoelectronic devices. However, conventional solution-processable semiconductors have intrinsic material and design limitations that prevent them from being used to create such devices with high performance. Here, we report an efficient solution-processed perovskite diode that is capable of working in both emission and detection modes. The device can be switched between modes by changing the bias direction, and it exhibits light emission with an external quantum efficiency of over 21% and a light detection limit on a sub-picowatt scale. The operation speed for both functions can reach tens of megahertz. Benefiting from the small Stokes shift of perovskites, our diodes exhibit high specific detectivity (more than 2×1012 Jones) at its peak emission (~804 nm), allowing optical signal exchange between two identical diodes. To illustrate the potential of the dual-functional diode, we show that it can be used to create a monolithic pulse sensor and a bidirectional optical communication system.

7.
Science ; 367(6484): 1352-1358, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32193323

ABSTRACT

We report the profiling of spatial and energetic distributions of trap states in metal halide perovskite single-crystalline and polycrystalline solar cells. The trap densities in single crystals varied by five orders of magnitude, with a lowest value of 2 × 1011 per cubic centimeter and most of the deep traps located at crystal surfaces. The charge trap densities of all depths of the interfaces of the polycrystalline films were one to two orders of magnitude greater than that of the film interior, and the trap density at the film interior was still two to three orders of magnitude greater than that in high-quality single crystals. Suprisingly, after surface passivation, most deep traps were detected near the interface of perovskites and hole transport layers, where a large density of nanocrystals were embedded, limiting the efficiency of solar cells.

8.
Nat Commun ; 11(1): 891, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32060279

ABSTRACT

Although perovskite light-emitting diodes (PeLEDs) have recently experienced significant progress, there are only scattered reports of PeLEDs with both high efficiency and long operational stability, calling for additional strategies to address this challenge. Here, we develop perovskite-molecule composite thin films for efficient and stable PeLEDs. The perovskite-molecule composite thin films consist of in-situ formed high-quality perovskite nanocrystals embedded in the electron-transport molecular matrix, which controls nucleation process of perovskites, leading to PeLEDs with a peak external quantum efficiency of 17.3% and half-lifetime of approximately 100 h. In addition, we find that the device degradation mechanism at high driving voltages is different from that at low driving voltages. This work provides an effective strategy and deep understanding for achieving efficient and stable PeLEDs from both material and device perspectives.

9.
Nat Commun ; 9(1): 4981, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478392

ABSTRACT

Identifying the origin of intrinsic instability for organic-inorganic halide perovskites (OIHPs) is crucial for their application in electronic devices, including solar cells, photodetectors, radiation detectors, and light-emitting diodes, as their efficiencies or sensitivities have already been demonstrated to be competitive with commercial available devices. Here we show that free charges in OIHPs, whether generated by incident light or by current-injection from electrodes, can reduce their stability, while efficient charge extraction effectively stabilizes the perovskite materials. The excess of both holes and electrons reduce the activation energy for ion migration within OIHPs, accelerating the degradation of OIHPs, while the excess holes and electrons facilitate the migration of cations or anions, respectively. OIHP solar cells capable of efficient charge-carrier extraction show improved light stability under regular operation conditions compared to an open-circuit condition where the photo-generated charges are confined in the perovskite layers.

10.
Adv Mater ; 30(38): e1803422, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30066403

ABSTRACT

Photodetectors are critical parts of an optical communication system for achieving efficient photoelectronic conversion of signals, and the response speed directly determines the bandwidth of the whole system. Metal halide perovskites, an emerging class of low-cost solution-processed semiconductors, exhibiting strong optical absorption, low trap states, and high carrier mobility, are widely investigated in photodetection applications. Herein, through optimizing the device engineering and film quality, high-performance photodetectors based on all-inorganic cesium lead halide perovskite (CsPbIx Br3- x ), which simultaneously possess high sensitivity and fast response, are demonstrated. The optimized devices processed from CsPbIBr2 perovskite show a practically measured detectable limit of about 21.5 pW cm-2 and a fast response time of 20 ns, which are both among the highest reported device performance of perovskite-based photodetectors. Moreover, the photodetectors exhibit outstanding long-term environmental stability, with negligible degradation of the photoresponse property after 2000 h under ambient conditions. In addition, the resulting perovskite photodetector is successfully integrated into an optical communication system and its applications as an optical signal receiver on transmitting text and audio signals is demonstrated. The results suggest that all-inorganic metal halide perovskite-based photodetectors have great application potential for optical communication.

11.
Adv Mater ; 30(9)2018 Mar.
Article in English | MEDLINE | ID: mdl-29318712

ABSTRACT

The surface composition of perovskite films is very sensitive to film processing and can deviate from the optimal, which generates unfavorable defects and results in efficiency loss in solar cells and slow response speed in photodetectors. An argon plasma treatment is introduced to modify the surface composition by tuning the ratio of organic and inorganic components as well as defect type before deposition of the passivating layer. It can efficiently enhance the charge collection across the perovskite-electrode interface by suppressing charge recombination. Therefore, perovskite solar cells with argon plasma treatment yield enhanced efficiency to 20.4% and perovskite photodetectors can reach their fastest respond speed, which is solely limited by the carrier mobility.

12.
ACS Appl Mater Interfaces ; 10(2): 1996-2003, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29280380

ABSTRACT

Transparent conducting electrodes with high transparency and conductivity are necessary components for optoelectronic devices. In this work, a facile wet-chemical lift-off process is first introduced to fabricate Au network flexible transparent electrodes with electrospun polymer fiber network as mask. Low resistance (5.18 Ω sq-1) of the transparent electrode was obtained when the transparency was around 90%, which was comparable to the state-of-the-art transparent electrodes. Low root-mean-square roughness of 23 nm was obtained when the Au nanowire thickness was 30 nm. The perovskite CH3NH3PbI3 photodetector based on the 30 nm thick Au network electrode shows a large linear dynamic range of 138 dB, a high detectivity over 1012 Jones, and better flexibility than that based on the commercial indium tin oxide electrode, which demonstrates that the Au network electrode is a promising flexible transparent conducting electrode for optoelectronic devices.

13.
Nat Commun ; 8(1): 1890, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29192232

ABSTRACT

The efficiency of perovskite solar cells has surged in the past few years, while the bandgaps of current perovskite materials for record efficiencies are much larger than the optimal value, which makes the efficiency far lower than the Shockley-Queisser efficiency limit. Here we show that utilizing the below-bandgap absorption of perovskite single crystals can narrow down their effective optical bandgap without changing the composition. Thin methylammonium lead triiodide single crystals with tuned thickness of tens of micrometers are directly grown on hole-transport-layer covered substrates by a hydrophobic interface confined lateral crystal growth method. The spectral response of the methylammonium lead triiodide single crystal solar cells is extended to 820 nm, 20 nm broader than the corresponding polycrystalline thin-film solar cells. The open-circuit voltage and fill factor are not sacrificed, resulting in an efficiency of 17.8% for single crystal perovskite solar cells.

14.
Adv Mater ; 29(39)2017 Oct.
Article in English | MEDLINE | ID: mdl-28846818

ABSTRACT

Organic-inorganic halide perovskites are promising photodetector materials due to their strong absorption, large carrier mobility, and easily tunable bandgap. Up to now, perovskite photodetectors are mainly based on polycrystalline thin films, which have some undesired properties such as large defective grain boundaries hindering the further improvement of the detector performance. Here, perovskite thin-single-crystal (TSC) photodetectors are fabricated with a vertical p-i-n structure. Due to the absence of grain-boundaries, the trap densities of TSCs are 10-100 folds lower than that of polycrystalline thin films. The photodetectors based on CH3 NH3 PbBr3 and CH3 NH3 PbI3 TSCs show low noise of 1-2 fA Hz-1/2 , yielding a high specific detectivity of 1.5 × 1013 cm Hz1/2 W-1 . The absence of grain boundaries reduces charge recombination and enables a linear response under strong light, superior to polycrystalline photodetectors. The CH3 NH3 PbBr3 photodetectors show a linear response to green light from 0.35 pW cm-2 to 2.1 W cm-2 , corresponding to a linear dynamic range of 256 dB.

15.
ACS Appl Mater Interfaces ; 8(36): 23868-75, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27556340

ABSTRACT

Organolead trihalide perovskites (OTPs) such as CH3NH3PbI3 (MAPbI3) have attracted much attention as the absorbing layer in solar cells and photodetectors (PDs). Flexible OTP devices have also been developed. Transparent electrodes (TEs) with higher conductivity, stability, and flexibility are necessary to improve the performance and flexibility of flexible OTP devices. In this work, patterned Au nanowire (AuNW) networks with high conductivity and stability are prepared and used as TEs in self-powered flexible MAPbI3 PDs. These flexible PDs show peak external quantum efficiency and responsivity of 60% and 321 mA/W, which are comparable to those of MAPbI3 PDs based on ITO TEs. The linear dynamic range and response time of the AuNW-based flexible PDs reach ∼84 dB and ∼4 µs, respectively. Moreover, they show higher flexibility than ITO-based devices, around 90%, and 60% of the initial photocurrent can be retained for the AuNW-based flexible PDs when bent to radii of 2.5 and 1.5 mm. This work suggests a high-performance, highly flexible, and stable TE for OTP flexible devices.

16.
Dalton Trans ; 45(18): 7856-65, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27064445

ABSTRACT

Large organolead triiodide perovskite (OTP) grains with little intragranular defects are beneficial to minimize carrier recombination, hence boosting cell performance. However, OTP films deposited by the widely used one-step spin-coating route are usually composed of small grains, because the poor thermal stability of OTP inherently restricts the processing window (temperature, time) during the film preparation, thus limiting grain coarsening in the film. Herein, the remarkable grain coarsening via Ostwald ripening in one-step deposited OTP films has been successfully realized by a facile and effective post-synthesis high-temperature heating treatment assisted with spin-coated CH3NH3I. By systematically investigating the heating treatment parameters, a high-quality OTP film with an enlarged average grain size from ∼280 nm to 1.2 µm, greatly enhanced crystallinity, and excellent stoichiometry is achieved. Benefiting from such improved features, this modified film shows significantly reduced defect states corresponding to the decrease of recombination centers, as well as enhanced carrier transport and injection properties, which lead to the dramatically boosted efficiency from 14.54% to 16.88% for planar-heterojunction solar cells. More importantly, the improved OTP film quality provides the possibility of thickening the absorber layer of cells to realize more sufficient absorption without serious aggravation of charge recombination. By further optimizing the thickness of the coarsened OTP films, highly efficient cells with relatively excellent reproducibility and an optimal efficiency of 19.24% are achieved.

17.
Chem Commun (Camb) ; 52(31): 5394-7, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27009444

ABSTRACT

Laser irradiation as a rapid crystallization approach was successfully introduced to prepare homogeneous, dense-grained CH3NH3PbI3 films. Planar-heterojunction solar cells employing these high-quality films showed the optimal efficiency of 17.8% with a remarkably high open-circuit voltage of 1.146 V.

18.
Chem Commun (Camb) ; 52(2): 304-7, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26513761

ABSTRACT

A dense and homogenous flat wide-bandgap (1.75 eV) CH3NH3PbI2.1Br0.9 perovskite film was prepared via a facile halide exchange route. The planar-heterojunction solar cell shows an optimal power conversion efficiency of 12.67% with negligible current hysteresis due to the film's large grains and vertically oriented grain boundaries.

19.
ACS Appl Mater Interfaces ; 7(48): 26482-90, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26565922

ABSTRACT

Hematite (α-Fe2O3) is one of the most promising candidates for photoelectrodes in photoelectrochemical water splitting system. However, the low visible light absorption coefficient and short hole diffusion length of pure α-Fe2O3 limits the performance of α-Fe2O3 photoelectrodes in water splitting. Herein, to overcome these drawbacks, single-crystalline tin-doped indium oxide (ITO) nanowire core and α-Fe2O3 nanocrystal shell (ITO@α-Fe2O3) electrodes were fabricated by covering the chemical vapor deposited ITO nanowire array with compact thin α-Fe2O3 nanocrystal film using chemical bath deposition (CBD) method. The J-V curves and IPCE of ITO@α-Fe2O3 core-shell nanowire array electrode showed nearly twice as high performance as those of the α-Fe2O3 on planar Pt-coated silicon wafers (Pt/Si) and on planar ITO substrates, which was considered to be attributed to more efficient hole collection and more loading of α-Fe2O3 nanocrystals in the core-shell structure than planar structure. Electrochemical impedance spectra (EIS) characterization demonstrated a low interface resistance between α-Fe2O3 and ITO nanowire arrays, which benefits from the well contact between the core and shell. The stability test indicated that the prepared ITO@α-Fe2O3 core-shell nanowire array electrode was stable under AM1.5 illumination during the test period of 40,000 s.

20.
Chem Commun (Camb) ; 51(84): 15426-9, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26344914

ABSTRACT

The resistance of the perovskite CH3NH3PbI3 film was found to decrease significantly in seconds when the film was exposed to an NH3 atmosphere at room-temperature, and recover to its original value in seconds when out of the NH3 environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...