Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(6): 1324-1332.e6, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38295795

ABSTRACT

In land plants, gametes derive from a small number of dedicated haploid cells.1 In angiosperms, one central cell and one egg cell are differentiated in the embryo sac as female gametes for double fertilization, while in non-flowering plants, only one egg cell is generated in the female sexual organ, called the archegonium.2,3 The central cell specification of Arabidopsis thaliana is controlled by the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1), which is a two-component signaling (TCS) activator sharing downstream regulatory components with the cytokinin signaling pathway.4,5,6,7 Our phylogenetic analysis suggested that CKI1 orthologs broadly exist in land plants. However, the role of CKI1 in non-flowering plants remains unclear. Here, we found that the sole CKI1 ortholog in the liverwort Marchantia polymorpha, MpCKI1, which functions through conserved downstream TCS components, regulates the female germline specification for egg cell development in the archegonium. In M. polymorpha, the archegonium develops three-dimensionally from a single cell accumulating MpBONOBO (MpBNB), a master regulator for germline initiation and differentiation.8 We visualized female germline specification by capturing the distribution pattern of MpBNB in discrete stages of early archegonium development, and found that MpBNB accumulation is restricted to female germline cells. MpCKI1 is required for the proper MpBNB accumulation in the female germline, and is critical for the asymmetric cell divisions that specify the female germline cells. These results suggest that CKI1-mediated TCS originated during early land plant evolution and participates in female germ cell specification in deeply diverged plant lineages.


Subject(s)
Arabidopsis , Marchantia , Marchantia/physiology , Phylogeny , Arabidopsis/metabolism , Signal Transduction , Germ Cells/metabolism , Cytokinins/metabolism , Gene Expression Regulation, Plant
2.
Curr Biol ; 28(3): 479-486.e5, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29395928

ABSTRACT

Land plants differentiate germ cells in the haploid gametophyte. In flowering plants, a generative cell is specified as a precursor that subsequently divides into two sperm cells in the developing male gametophyte, pollen. Generative cell specification requires cell-cycle control and microtubule-dependent nuclear relocation (reviewed in [1-3]). However, the generative cell fate determinant and its evolutionary origin are still unknown. In bryophytes, gametophytes produce eggs and sperm in multicellular reproductive organs called archegonia and antheridia, respectively, or collectively called gametangia. Given the monophyletic origin of land plants [4-6], evolutionarily conserved mechanisms may play key roles in these diverse reproductive processes. Here, we showed that a single member of the subfamily VIIIa of basic helix-loop-helix (bHLH) transcription factors in the liverwort Marchantia polymorpha primarily accumulated in the initial cells and controlled their development into gametangia. We then demonstrated that an Arabidopsis thaliana VIIIa bHLH transiently accumulated in the smaller daughter cell after an asymmetric division of the meiosis-derived microspore and was required for generative cell specification redundantly with its paralog. Furthermore, these A. thaliana VIIIa bHLHs were functionally replaceable by the M. polymorpha VIIIa bHLH. These findings suggest the VIIIa bHLH proteins as core regulators for reproductive development, including germ cell differentiation, since an early stage of land plant evolution.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Evolution, Molecular , Germ Cells, Plant/growth & development , Marchantia/physiology , Plant Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Germ Cells, Plant/metabolism , Marchantia/genetics , Phylogeny , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...