Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Integr Zool ; 19(2): 343-346, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37806954

ABSTRACT

With the development of artificial intelligence, the integration of LiDAR technologies and foodscape theories to study wildlife habitat, nutritional ecology, species coexistence, and other existing hot and difficult issues would become an international frontier in the field of wildlife habitat ecology and management.


Subject(s)
Artificial Intelligence , Herbivory , Animals , Ecosystem , Forests , Ecology
2.
Plants (Basel) ; 12(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37960123

ABSTRACT

This study investigated the spatial variability in soil organic carbon (SOC), total nitrogen (TN), soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN) and their possible relationships with other soil properties in the Hongqipao reservoir, which is dominated by different vegetation types. The results showed that there were high spatial variabilities in SOC, TN, SMBC and SMBN, and that the SOC, TN, SMBC and SMBN contents decreased with increasing soil depth in the Hongqipao reservoir. The SOC was significantly positively correlated with TN, SMBC, moisture content (MC) and negatively correlated with carbon to nitrogen ratio (C:N ratio) and bulk density (BD). Soil TN was significantly positively correlated with SMBC, SMBN, MC and negatively correlated with the C:N ratio, BD and pH. The SMBC was significantly positively correlated with SMBN, MC and negatively correlated with the C:N ratio, BD and pH. The SMBN was significantly negatively correlated with the C:N ratio and BD. All of the measures of soil properties in this study could explain the higher significant variability in the response variables (SOC, TN, SMBC and SMBN contents). The generalized additive model (GAM) showed that SOC and TN had different influencing factors in different soil depths. The structural equation model (SEM) showed that vegetation types had a significantly positive effect on TN and SMBN, and the soil depths had a significantly positive effect on SOC and a significantly negative effect on TN and SMBC. This study further suggests that vegetation types play a major role in determining the spatial characteristics of soil carbon and nitrogen, and any changes in the vegetation types in the reservoir may influence the distributions of soil carbon and nitrogen. This may affect the global carbon and nitrogen budgets and the atmospheric greenhouse gas concentration significantly.

3.
Integr Zool ; 18(2): 333-352, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35841611

ABSTRACT

Unmanned aerial vehicle (UAV) technology, artificial intelligence, and the relevant hardware can be used for monitoring wild animals. However, existing methods have several limitations. Therefore, this study explored the monitoring and protection of Amur tigers and their main prey species using images from UAVs by optimizing the algorithm models with respect to accuracy, model size, recognition speed, and elimination of environmental interference. Thermal imaging data were collected from 2000 pictures with a thermal imaging lens on a DJI M300RTK UAV at the Hanma National Nature Reserve in the Greater Khingan Mountains in Inner Mongolia, Wangqing National Nature Reserve in Jilin Province, and Siberian Tiger Park in Heilongjiang Province. The YOLO V5s algorithm was applied to recognize the animals in the pictures. The accuracy rate was 94.1%, and the size of the model weight (total weight of each model layer trained with the training set) was 14.8 MB. The authors improved the structures and parameters of the YOLO V5s algorithm. As a result, the recognition accuracy rate became 96%, and the model weight was 9.3 MB. The accuracy rate increased by 1.9%, the model weight decreased by 37.2% from 14.8 MB to 9.3 MB, and the recognition time of a single picture was shortened by 34.4% from 0.032 to 0.021 s. This not only increases the recognition accuracy but also effectively lowers the hardware requirements that the algorithm relies on, which provides a lightweight fast recognition method for UAV-based edge computing and online investigation of wild animals.


Subject(s)
Algorithms , Artificial Intelligence , Animals , Animals, Wild , China , Mammals
4.
Front Microbiol ; 13: 1033050, 2022.
Article in English | MEDLINE | ID: mdl-36338061

ABSTRACT

Insufficient prey density is a major factor hindering the recovery of the Amur tiger (Panthera tigris altaica), and to effectively restore the Amur tiger, red deer (Cervus elaphus) was released into the Huangnihe National Nature Reserve of Northeast China as the main reinforcement. Differences in feeding and synergistic changes caused by the intestinal microbial communities could impact the adaptation of wildlife following reintroductions into field environments. We analyzed the foraging changes in shaping the intestinal microbial community of the red deer after being released to the Huangnihe National Nature Reserve and screened the key microbial flora of the red deer when processing complex food resources. The feeding and intestinal microbial communities of the red deer were analyzed by plant Deoxyribonucleic acid (DNA) barcoding sequencing and 16S rRNA high-throughput sequencing, respectively. The results showed that there were significant differences in food composition between wild and released groups [released in 2019 (R2): n = 5; released in 2021 (R0): n = 6]; the wild group fed mainly on Acer (31.8%) and Abies (25.6%), R2 fed mainly on Betula (44.6%), R0 had not formed a clear preferred feeding pattern but had certain abilities to process and adapt to natural foods. Firmicutes (77.47%) and Bacteroides (14.16%) constituted the main bacterial phylum of red deer, of which, the phylum Firmicutes was the key species of the introduced red deer for processing complex food resources (p < 0.05). The wild release process significantly changed the intestinal microbial structure of the red deer, making it integrate into the wild red deer. The period since release into the wild may be a key factor in reshaping the structure of the microbial community. This study suggested that the intestinal microbial structure of red deer was significantly different depending on how long since captive deer has been translocated. Individuals that have lived in similar environments for a long time will have similar gut microbes. This is the adaption process of the wildlife to natural environment after wild release, taking into account the gut microbes, and the feeding changes in shaping microbial communities can help introduced red deer match complex food resources and novel field environments.

5.
Plants (Basel) ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365276

ABSTRACT

Plants regulate greenhouse gas (GHG) fluxes in wetland ecosystems, but the mechanisms of plant removal and plant species that contribute to GHG emissions remain unclear. In this study, the fluxes of carbon dioxide (CO2) and nitrous oxide (N2O) were measured using the static chamber method from an island forest dominated by two different species, namely Betula platyphylla (BP) and Larix gmelinii (LG), in a marsh wetland in the Great Xing'an Mountains. Four sub-plots were established in this study: (1) bare soil after removing vegetation under BP (SBP); (2) bare soil after removing vegetation under LG (SLG); (3) soil with vegetation under BP (VSBP); and (4) soil with vegetation under LG (VSLG). Additionally, the contributions of the dark respiration from plant aerial parts under BP (VBP) and LG (VLG) to GHG fluxes were calculated. We found that the substantial spatial variability of CO2 fluxes ranged from −25.32 ± 15.45 to 187.20 ± 74.76 mg m−2 h−1 during the study period. The CO2 fluxes decreased in the order of SBP > VSLG > VSBP > SLG > VLG > VBP, indicating that vegetation species had a great impact on CO2 emissions. Particularly, the absence of vegetation promoted CO2 emission in both BP and LG. Additionally, CO2 fluxes showed dramatically seasonal variations, with high CO2 fluxes in late spring (May) and summer (June, July, and August), but low fluxes in late summer (August) and early autumn (September). Soil temperatures at 0−20 cm depth were better predictors of CO2 fluxes than deeper soil temperatures. N2O fluxes were varied in different treatments with the highest N2O fluxes in SLG and the lowest N2O fluxes in VBP. Meanwhile, no significant correlation was found between N2O fluxes and air or soil temperatures. Temporally, negative N2O fluxes were observed from June to October, indicating that soil N2O fluxes were reduced and emitted as N2, which was the terminal step of the microbial denitrification process. Most of the study sites were CO2 sources during the warm season and CO2 sinks in the cold season. Thus, soil temperature plays an important role in CO2 fluxes. We also found that the CO2 flux was positively related to pH in a 10 cm soil layer and positively related to moisture content (MC) in a 50 cm soil layer in VSBP and VSLG. However, the CO2 flux was negatively related to pH in a 30 cm soil layer in SBP and SLG. Our findings highlight the effects of vegetation removal on GHG fluxes, and aid in the scientific management of wetland plants.

6.
Behav Brain Res ; 433: 113996, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35817136

ABSTRACT

BACKGROUND: Anesthesia and psychotropic drugs in pregnant women may cause long-term effects on the brain development of unborn babies. The authors set out to investigate the neurotoxicity of S-ketamine, which possesses anesthetic and antidepressant effects and may cause attention deficit hyperactivity disorder (ADHD)- and depression-like behaviors in offspring mice. METHODS: Pregnant mice were administered with low-, medium-, and high-dose S-ketamine (15, 30, and 60 mg/kg) by intraperitoneal injection for 5 days from gestational day 14-18. At 21 days after birth, an elevated plus-maze test, fear conditioning, open field test, and forced swimming test were used to assess ADHD- and depression-like behaviors. Neuronal amount, glial activation, synaptic function indicated by ki67, and inhibitory presynaptic proteins revealed by GAD2 in the hippocampus, amygdala, habenula nucleus, and lateral hypothalamus (LHA) were determined by immunofluorescence assay. RESULTS: All the pregnant mice exposed to high-dose S-ketamine administration had miscarriage after the first injection. Both low-dose and medium-dose S-ketamine administration significantly increased the open-arm time and attenuated frozen time in the fear conditioning, which indicates impulsivity and memory dysfunction-like behaviors. Medium-dose S-ketamine administration reduced locomotor activity in the open field and increased immobility time in the forced swimming test, indicating depression-like behaviors. Changes in astrocytic activation, synaptic dysfunction, and decreased inhibitory presynaptic proteins were found in the hippocampus, amygdala, and habenula nucleus. CONCLUSIONS: These results demonstrate that S-ketamine may lead to detrimental effects, including ADHD-and depression-like behaviors in offspring mice. More studies should be promoted to determine the neurotoxicity of S-ketamine in the developing brain.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Ketamine , Animals , Behavior, Animal , Depression/chemically induced , Female , Humans , Ketamine/toxicity , Mice , Pregnancy , Swimming
7.
Sci Total Environ ; 806(Pt 1): 150537, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34844317

ABSTRACT

Effects of climate warming on trophic cascades are increasingly reported for large herbivores occupying northern latitudes. During the last 40 years, moose (Alces alces) in northeast China have lost nearly half of their historical distribution through their habitat shifting northwards. There are many possible causes of bottom-up and top-down effects of temperature and for moose in northeast China they are poorly understood. Of particular relevance are the effects of extrinsic environmental factors on gene flow, nutritional adaptions, and gut microbiota that occur as moose populations retreat northwards. We combined molecular biology, nutritional ecology and metagenomics to gain deeper mechanistic insights into the effects of temperature on moose populations. In this study, we revealed that the direction and intensity of gene flow is consistent with global warming driving retreats of moose populations. We interpret this as evidence for the northward movement of moose populations, with cooler northern populations receiving more immigrants and warmer southern populations supplying emigrants. Comparison across latitudes showed that warmer late spring temperatures were associated with plant community composition and facilitated related changes in moose protein and carbohydrate intake through altering forage availability, forage quality and diet composition. Furthermore, these nutrient shifts were accompanied by changes in gut microbial composition and functional pathways related to nutrient metabolism. This study provided insights into mechanisms driving effects of spatial heterogeneous warming on genetic, nutritional and physiological adaptions related to key demographic rates and patterns of survival of heat-sensitive ungulates along a latitude gradient. Understanding such changes helps to identify key habitat areas and plant species to ensure accurate assessment of population status and targeted management of moose populations.


Subject(s)
Deer , Gastrointestinal Microbiome , Animals , Ecosystem , Gene Flow , Hot Temperature
8.
Sci Total Environ ; 770: 144722, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736366

ABSTRACT

Warming, land-use change, and habitat loss are three major threats to aquatic biodiversity worldwide under the influences of anthropogenic disturbances. Positive feedback between warming and bottom-up regulation may cause irreversible ecological regime shifts. Threshold dynamics of interspecific interactions have been rarely studied in freshwater fish communities using threshold community models. Here we use 66 years (1950-2015) of data to link four ecological regime shifts of 9-species fish communities to climatic and land use changes in Lake Hulun, the largest freshwater lake of Northern China. Overfishing caused the collapse of piscivorous fish populations and an ecological regime shift of Lake Hulun in the late 1950s. The first recorded algal bloom of Lake Hulun took place in 1986, with accelerated warming and rapid increases in livestock grazing. The dominance of planktivorous minnow populations reduced fish biodiversity in a nonlinear, threshold manner when annual mean ambient temperature was >0.12 °C. Multivariate environmental vector regression demonstrated that warming, eutrophication, and water-storage reduction (i.e., habitat loss) were related to three ecological regime shifts of Lake Hulun from 1960 to 2015. Multivariate autoregressive models (MAR) did not detect predation by piscivorous fish in Lake Hulun after 1960. Threshold MAR models indicated that dominant minnow populations and other prey fish populations switched from top-down to bottom-up control during the 1980s. Sustained positive feedback between warming, the dominance of planktivorous fish populations, and bottom-up regulation caused predator-prey role reversal, and probably resulted in three regime shifts of Lake Hulun over 56 years. This study provides a comprehensive analysis of ecological regime shifts in Hulun Lake fish communities, and has potential implications for fish species living in similar environments that are subject to global warming, land-use changes, and overfishing.


Subject(s)
Conservation of Natural Resources , Lakes , Animals , China , Climate Change , Ecosystem , Fisheries , Fishes
9.
Chem Asian J ; 15(1): 182-190, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31769211

ABSTRACT

Metal-organic frameworks (MOFs) as new classes of proton-conducting materials have been highlighted in recent years. Nevertheless, the exploration of proton-conducting MOFs as formic acid sensors is extremely lacking. Herein, we prepared two highly stable 3D isostructural lanthanide(III) MOFs, {(M(µ3 -HPhIDC)(µ2 -C2 O4 )0.5 (H2 O))⋅2 H2 O}n (M=Tb (ZZU-1); Eu (ZZU-2)) (H3 PhIDC=2-phenyl-1H-imidazole-4,5-dicarboxylic acid), in which the coordinated and uncoordinated water molecules and uncoordinated imidazole N atoms play decisive roles for the high-performance proton conduction and recognition ability for formic acid. Both ZZU-1 and ZZU-2 show temperature- and humidity-dependent proton-conducting characteristics with high conductivities of 8.95×10-4 and 4.63×10-4  S cm-1 at 98 % RH and 100 °C, respectively. Importantly, the impedance values of the two MOF-based sensors decrease upon exposure to formic acid vapor generated from formic aqueous solutions at 25 °C with good reproducibility. By comparing the changes of impedance values, we can indirectly determine the concentration of HCOOH in aqueous solution. The results showed that the lowest detectable concentrations of formic acid aqueous solutions are 1.2×10-2  mol L-1 by ZZU-1 and 2.0×10-2  mol L-1 by ZZU-2. Furthermore, the two sensors can distinguish formic acid vapor from interfering vapors including MeOH, N-hexane, benzene, toluene, EtOH, acetone, acetic acid and butane. Our research provides a new platform of proton-conductive MOFs-based sensors for detecting formic acid.


Subject(s)
Formates/analysis , Lanthanoid Series Elements/chemistry , Metal-Organic Frameworks/chemistry , Protons , Humidity , Particle Size , Temperature
10.
Animals (Basel) ; 10(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906149

ABSTRACT

The distribution area of moose in China has been shrinking back toward the north and northeast because of climate change and human disturbance, and the population number has been declining. Between 2011 and 2015, we studied moose at six sites in the northeast of China during the snowy seasons. We collected fecal samples and plant samples that were used to estimate population densities for moose, as well as their macro-nutrient selection. Out of a total of 257 fecal samples collected at six sites, we identified a total of 120 individual moose (57 females and 63 males). The population density (moose/km2 ± SE) was highest at Hanma with 0.305 ± 0.064 moose/km2 and lowest at Meitian with only 0.028 ± 0.013 moose/km2. Forage availability was different among sites, with the lowest availability at Mohe (58.17 number/20 m2) and highest was Zhanhe (250.44 number/20 m2). Moose at Zhanhe, Hanma, and Nanwenghe had a balanced diet with higher N:C (1:7), while at Meitian, Shuanghe and Mohe the N:C was 1:8. Our results indicate that the southern areas had low forage quality and quantity and this may be the reason for the distribution of the population of moose shrinking northward.

11.
Chin Med J (Engl) ; 131(9): 1045-1050, 2018 May 05.
Article in English | MEDLINE | ID: mdl-29692375

ABSTRACT

BACKGROUND: Magnetic resonance (MR) imaging provides a unique, noninvasive diagnostic platform to quantify the physiological and biochemical variables of skeletal muscle at rest. This study was to investigate the difference in thigh skeletal muscles between snowboarding halfpipe athletes and healthy volunteers via multiparametric MR imaging. METHODS: A comparative study was conducted between 12 healthy volunteers and 14 snowboarding halfpipe athletes. MR scanning targeted the left leg at the level of the proximal thigh on a 3.0T MR system. The measured parameters compared between the two groups included T1, T2, T2* relaxation times, fat fraction (FF), and cross-sectional area (CSA) of the quadriceps femoris and the hamstring muscles. Statistical analysis was carried out using independent sample t-test. Interrater reliability was also assessed with intraclass correlation coefficients (ICCs). RESULTS: It was statistically equivalent between two groups in age, body mass index, thigh circumference, calf circumference, systolic blood pressure, and resting heart rate (all P > 0.05). However, the T1 and T2 values of the hamstring muscles in the athlete group were found to be significantly shorter than those in control group (T1: 1063.3 ± 24.1 ms vs. 1112.0 ± 38.2 ms in biceps femoris, 1050.4 ± 31.2 ms vs. 1095.0 ± 39.5 ms in semitendinosus, 1053.1 ± 31.7 ms vs. 1118.4 ± 40.0 ms in semimembranosus, respectively; T2: 33.4 ± 0.7 ms vs. 36.1 ± 1.9 ms in biceps femoris, 34.6 ± 2.0 ms vs. 37.0 ± 1.9 ms in semitendinosus, 36.9 ± 1.5 ms vs. 38.9 ± 2.4 ms in semimembranosus, respectively; all P < 0.05) although T2* relaxation time was detected with no significant difference. The FF of the hamstring muscles was obviously less than the control group (5.5 ± 1.9% vs. 10.7 ± 4.7%, P < 0.001). In addition, the quadriceps' CSA in the athlete group was substantially larger than the control group (8039.0 ± 1072.3 vs. 6258.2 ± 852.0 mm2, P < 0.001). Interrater reliability was excellent (ICC: 0.758-0.994). CONCLUSION: Multiple MR imaging parameters indicated significant differences between snowboarding halfpipe athletes and healthy volunteers in the thigh skeletal muscles.


Subject(s)
Muscle, Skeletal/physiology , Skiing/physiology , Thigh/diagnostic imaging , Thigh/physiology , Adolescent , Adult , Athletes/statistics & numerical data , Cross-Sectional Studies , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Muscle, Skeletal/diagnostic imaging , Young Adult
12.
Chinese Medical Journal ; (24): 1045-1050, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-686984

ABSTRACT

<p><b>Background</b>Magnetic resonance (MR) imaging provides a unique, noninvasive diagnostic platform to quantify the physiological and biochemical variables of skeletal muscle at rest. This study was to investigate the difference in thigh skeletal muscles between snowboarding halfpipe athletes and healthy volunteers via multiparametric MR imaging.</p><p><b>Methods</b>A comparative study was conducted between 12 healthy volunteers and 14 snowboarding halfpipe athletes. MR scanning targeted the left leg at the level of the proximal thigh on a 3.0T MR system. The measured parameters compared between the two groups included T1, T2, T2* relaxation times, fat fraction (FF), and cross-sectional area (CSA) of the quadriceps femoris and the hamstring muscles. Statistical analysis was carried out using independent sample t-test. Interrater reliability was also assessed with intraclass correlation coefficients (ICCs).</p><p><b>Results</b>It was statistically equivalent between two groups in age, body mass index, thigh circumference, calf circumference, systolic blood pressure, and resting heart rate (all P > 0.05). However, the T1 and T2 values of the hamstring muscles in the athlete group were found to be significantly shorter than those in control group (T1: 1063.3 ± 24.1 ms vs. 1112.0 ± 38.2 ms in biceps femoris, 1050.4 ± 31.2 ms vs. 1095.0 ± 39.5 ms in semitendinosus, 1053.1 ± 31.7 ms vs. 1118.4 ± 40.0 ms in semimembranosus, respectively; T2: 33.4 ± 0.7 ms vs. 36.1 ± 1.9 ms in biceps femoris, 34.6 ± 2.0 ms vs. 37.0 ± 1.9 ms in semitendinosus, 36.9 ± 1.5 ms vs. 38.9 ± 2.4 ms in semimembranosus, respectively; all P < 0.05) although T2* relaxation time was detected with no significant difference. The FF of the hamstring muscles was obviously less than the control group (5.5 ± 1.9% vs. 10.7 ± 4.7%, P < 0.001). In addition, the quadriceps' CSA in the athlete group was substantially larger than the control group (8039.0 ± 1072.3 vs. 6258.2 ± 852.0 mm, P < 0.001). Interrater reliability was excellent (ICC: 0.758-0.994).</p><p><b>Conclusion</b>Multiple MR imaging parameters indicated significant differences between snowboarding halfpipe athletes and healthy volunteers in the thigh skeletal muscles.</p>


Subject(s)
Adolescent , Adult , Humans , Male , Young Adult , Athletes , Cross-Sectional Studies , Healthy Volunteers , Magnetic Resonance Imaging , Muscle, Skeletal , Diagnostic Imaging , Physiology , Skiing , Physiology , Thigh , Diagnostic Imaging , Physiology
13.
Cell Biochem Funct ; 35(6): 296-303, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28791708

ABSTRACT

Ovarian cancer is the most common malignancy in women. Owing to late syndromic presentation and lack of efficient early detection, most cases are diagnosed at advanced stages. Surgery and platinum-based chemotherapy are still the standard care currently. However, resistance invoked often compromises the clinical value of the latter. Expression of DNA methyltransferase 1 (DNMT1) was analysed by gene array. Protein was determined by immunoblotting. Exosome was isolated with commercial kit. Cell proliferation was measured by CCK8 method. Annexin V-PI double staining was performed for apoptosis evaluation. Xenograft model was established and administrated with exosome. Tumour growth and overall survival were monitored. We demonstrated the upregulation of DNMT1 in both tumour and derived cell line. DNMT1 transcripts were highly enriched in exosomes from conditioned medium of ovarian cells. Co-incubation with exosomes stimulated endogenous expression and rendered host cell the resistance to cytotoxicity of cisplatin. In vivo administration of DNMT1-containing exosomes exacerbated xenograft progression and reduced overall survival significantly. Moreover, treatment with exosome inhibitor GW4869 almost completely restored sensitivity in resistant cells. Our data elucidated an unappreciated mechanism of exosomal DNMT1 in cisplatin resistance in ovarian cancer, also indicating the potential of the combination of exosome inhibitor with cisplatin in resistant patients.


Subject(s)
Cisplatin/therapeutic use , DNA (Cytosine-5-)-Methyltransferases/metabolism , Exosomes/enzymology , Ovarian Neoplasms/drug therapy , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzylidene Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/toxicity , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , Drug Resistance, Neoplasm/drug effects , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , RNA, Messenger/metabolism , Transplantation, Heterologous , Up-Regulation/drug effects
14.
J Wildl Dis ; 53(4): 854-858, 2017 10.
Article in English | MEDLINE | ID: mdl-28700323

ABSTRACT

The giant panda (Ailuropoda melanoleuca) is the most iconic endangered species in the world, but there is little information about the spatial and temporal distribution of parasites in the wild giant panda population. In total, 193 fecal samples from giant pandas in the Foping National Nature Reserve, People's Republic of China, were analyzed for parasite eggs using a modification of the McMaster technique. The morphology and size of Baylisascaris schroederi eggs were observed under an optical microscope. The prevalence and intensity of B. schroederi infection during the sampling year 2012 were 52.3% (101/193) and 89 eggs/g of feces, respectively, among giant pandas in this population. The prevalence of B. schroederi in the pandas varied during different months of the year, from 7% to 100%, and the prevalences in spring, summer, autumn, and winter were 71, 77, 23, and 18%, respectively. The prevalence was not significantly different between giant pandas that ate two different types of bamboo, but the intensity of infection was higher in the group eating Arundinaria fargesii (P=0.043). Altitude, temperature, and dew point were correlated with the infection intensity (r=-0.224, P<0.001; r=0.328, P<0.001; r=0.328, P=0.028, respectively). There was no correlation between infection intensity and distance to rivers. This study provides a better understanding of B. schroederi prevalence among the wild giant pandas in Foping National Nature, China.


Subject(s)
Ascaridida Infections/veterinary , Ursidae/parasitology , Altitude , Animals , Ascaridida Infections/epidemiology , Ascaridida Infections/parasitology , Ascaridoidea/isolation & purification , China/epidemiology , Diet/veterinary , Ecosystem , Feces/parasitology , Geographic Information Systems , Geography , Parasite Egg Count/veterinary , Poaceae , Prevalence , Risk Factors , Sasa , Seasons , Temperature
15.
J Obstet Gynaecol Res ; 43(6): 974-981, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28621051

ABSTRACT

AIM: To explore whether plasma microRNA-16-5p, -17-5p and -20a-5p can be used as diagnostic biomarkers in gestational diabetes mellitus (GDM) and to investigate the relationship between those microRNAs and the risk factors of GDM (body mass index [BMI], insulin resistance [IR] and tumor necrosis factor-α (TNF-α)). METHODS: A total of 85 pregnant women with GDM and 72 pregnant women without GDM were enrolled in this study. The plasma concentration of microRNAs (microRNA-16-5p, -17-5p, -19a-3p, -19b-3p, -20a-5p) was measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Spearman's correlation analysis was used to evaluate the correlation between those microRNAs and the risk factors of GDM, and receiver operating characteristic curve analysis was used to evaluate diagnostic sensitivity and specificity. RESULTS: Compared with non-GDM women, the relative and absolute expression of plasma microRNA-16-5p, -17-5p, -20a-5p from GDM women were significantly upregulated, when those women were diagnosed as GDM. During pregnancy, the expression of those microRNAs from GDM women also were significantly upregulated. The expression of those microRNAs was also positively correlated with IR, a risk factor of GDM. Plasma microRNA-16-5p, -17-5p, -20a-5p reflected an obvious separation between GDM women and non-GDM women, with areas under the curve of 0.92 (95%CI: 0.871-0.984), 0.88 (95%CI: 0.798-0.962), and 0.74 (95%CI: 0.618-0.870), respectively, cut-offs >2554, 1820, 3886 copies/µL, respectively; sensitivity 41.6%, 21.4% and 17.8%, respectively; and specificity 95.8%, 95.4% and 95.4%, respectively. CONCLUSION: Plasma microRNA-16-5p, -17-5p and -20a-5p are potential diagnostic biomarkers in GDM.


Subject(s)
Diabetes, Gestational/blood , MicroRNAs/blood , Adult , Biomarkers/blood , Female , Humans , Pregnancy , ROC Curve , Young Adult
16.
Sci Rep ; 7: 41514, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128311

ABSTRACT

Resource selection of herbivores is a complex ecological process that operates in relation to biological or non-biological factors, which may affect the feeding and movement, and subsequently their spatial distribution and environmental stress. Here, we estimated moose (Alces alces cameloides) resource selection for habitat variables and the effect of interspecific interactions related to roe deer (Capreolus pygargus bedfordi) on its population distribution and environmental stress in the Khingan Mountain region of northeast China at local and regional scales. Different response patterns of moose resource selection, spatial distribution, and environmental stress to interspecific interaction-linked habitat factors were shown at the two scales. A general ecological chain, response of moose to interspecific interaction-linked habitat factors, was exhibited at the regional scale, and at the local scale, heterogeneous responses, linkages of habitat selection and environmental stress of moose population might be driven by different interspecific interaction patterns. Our study firstly suggested that moose resource selection, food availability, diet quality, population density and environmental stress indicators were impacted by interactions with the distribution of other sympatric herbivore species and showed differences in ecological response chains at various spatial scales. These findings are useful for sympatric herbivore assembly conservation, habitat quality monitoring and management.


Subject(s)
Conservation of Natural Resources , Deer/physiology , Ecosystem , Animals , Feces/chemistry , Hydrocortisone/analysis , Nitrogen/analysis , Nonlinear Dynamics , Population Density , Probability , Species Specificity
17.
J Pharmacol Sci ; 131(2): 93-100, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27156928

ABSTRACT

Gestational diabetes mellitus (GDM) is a disease commonly occurs during mid to late pregnancy with pathologies such as hyperglycemia, hyperinsulinemia and mal-development of fetus. We have previously demonstrated that pancreatic endoderm (PE) derived from human embryonic stem cells (hESCs) effectively alleviated diabetic symptoms in a mouse model of GDM, although the clinical efficacy was limited due to oxidative stress. In this study, using the anti-oxidant agent naringenin, we aimed to further enhance the efficacy of hESC-derived PE transplant. Insulin-secreting PE was differentiated from hESCs, which were then transplanted into GDM mice. Naringenin was administered to mice receiving the PE transplant, with sham operated mice serving as negative control, to assess its effect on alleviation of GDM symptoms. We found that naringenin supplement further improved insulin response, glucose metabolism and reproductive outcome of the PE-transplanted female mice. Our new findings further potentiates the feasibility of using differentiated hESCs to treat GDM, in which anti-oxidative agent such as naringenin could greatly enhance the clinical efficacy of stem cell based therapies.


Subject(s)
Antioxidants/therapeutic use , Diabetes, Gestational/therapy , Endoderm/transplantation , Flavanones/therapeutic use , Animals , Antioxidants/pharmacology , Blood Glucose/analysis , Cell Line , Cell Survival/drug effects , Diabetes, Gestational/blood , Diabetes, Gestational/metabolism , Female , Flavanones/pharmacology , Human Embryonic Stem Cells/drug effects , Humans , Hydrogen Peroxide/pharmacology , Insulin/blood , Insulin/metabolism , Insulin Secretion , Litter Size , Mice , Oxidants/pharmacology , Oxidative Stress/drug effects , Pancreas , Pregnancy , Reactive Oxygen Species/metabolism
18.
Zhongguo Dang Dai Er Ke Za Zhi ; 17(6): 543-8, 2015 Jun.
Article in Chinese | MEDLINE | ID: mdl-26108310

ABSTRACT

Intellectual disability, occurring in 1%-3% of the general population, is a common disease of the nervous system in children. Since diverse genetic and environmental factors contribute to its pathogenesis, the etiological diagnosis of intellectual disability is challenging with respect to the selection of diagnostic tests. It is important to determine the etiology of intellectual disability for the assessment of prognosis, treatment and the family plan. This paper summarizes the research progress in etiology and diagnosis for intellectual disability and introduces the recommended clinical genetics diagnostic approach from the American Academy of Pediatrics.


Subject(s)
Intellectual Disability/diagnosis , Intellectual Disability/etiology , Chromosome Banding , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/genetics , Microarray Analysis
19.
Indian J Orthop ; 49(3): 272-7, 2015.
Article in English | MEDLINE | ID: mdl-26015625

ABSTRACT

BACKGROUND: Anatomy of the pedicles of the seventh cervical vertebra (C7) at the cervicothoracic junction is different from other cervical vertebrae. Fixation of C7 is required during cervical vertebra and upper thoracic injuries in clinical practice. However, the typical pedicle screw insertion methods may have problems in clinical practice based on the anatomical features of C7. This study is to explore a new pedicle screw insertion technique for C7 and to provide anatomical and radiographic basis for clinical application. MATERIALS AND METHODS: C7 vertebral specimens from six human cadavers were observed for the relative position between the posterior bony landmark and the pedicle projection. Computed tomography (CT) was performed for 30 patients with cervical spondylosis (26-61 years old, mean age was 42.3 years old). The CT scan data were processed by Mimics 8.1 software for associated parameter measurement. Appropriate screw entry points (Eps) and insertion angles were selected. A total of 12 pedicle screws were inserted and then observed. The six specimens were observed after inserting the screw using this method. The junction site of the middle 1/3 and outer 1/3 segment of line G [The junction between point A (the intersection point of the superior margin of the lamina of C7 and the medial margin of the superior articular process) and point B (the intersection point of the lateral margin of the inferior articular process and the transverse process)] was taken as the Ep. The screw insertion direction parallel horizontally to the upper terminal lamina of C7 and the sagittal angle was between 35° and 45°. RESULTS: Gross and imaging observations revealed that pedicle projection was on the line (line G) between point A (the intersection point of the superior margin of the lamina of C7 and the medial margin of the superior articular process) and point B (the intersection point of the lateral margin of the inferior articular process and the transverse process) and located at the middle 1/3 and outer 1/3 segments of the line (point L[also it is the screw entry points (Eps)]. No significant difference in the measurements on the left and right sides were observed (P > 0.05). No penetration of the 12 screws through pedicle was observed. CONCLUSION: The junction site of the middle 1/3 and outer 1/3 segments of line G are the projection points of C7 pedicles on the lateral mass. The junction site anatomical position was simply and easy to be controlled during surgery, simultaneously avoided uncertainty of other methods. This study provides a new method for determining an Ep for C7 pedicle screw insertion.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-346109

ABSTRACT

Intellectual disability, occurring in 1%-3% of the general population, is a common disease of the nervous system in children. Since diverse genetic and environmental factors contribute to its pathogenesis, the etiological diagnosis of intellectual disability is challenging with respect to the selection of diagnostic tests. It is important to determine the etiology of intellectual disability for the assessment of prognosis, treatment and the family plan. This paper summarizes the research progress in etiology and diagnosis for intellectual disability and introduces the recommended clinical genetics diagnostic approach from the American Academy of Pediatrics.


Subject(s)
Humans , Chromosome Banding , High-Throughput Nucleotide Sequencing , Intellectual Disability , Diagnosis , Genetics , Microarray Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...