Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Death Discov ; 9(1): 288, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543696

ABSTRACT

Regulation of protein translation initiation is tightly associated with cell growth and survival. Here, we identify Paip1, the Drosophila homolog of the translation initiation factor PAIP1, and analyze its role during development. Through genetic analysis, we find that loss of Paip1 causes reduced protein translation and pupal lethality. Furthermore, tissue specific knockdown of Paip1 results in apoptotic cell death in the wing imaginal disc. Paip1 depletion leads to increased proteotoxic stress and activation of the integrated stress response (ISR) pathway. Mechanistically, we show that loss of Paip1 promotes phosphorylation of eIF2α via the kinase PERK, leading to apoptotic cell death. Moreover, Paip1 depletion upregulates the transcription factor gene Xrp1, which contributes to apoptotic cell death and eIF2α phosphorylation. We further show that loss of Paip1 leads to an increase in Xrp1 translation mediated by its 5'UTR. These findings uncover a novel mechanism that links translation impairment to tissue homeostasis and establish a role of ISR activation and Xrp1 in promoting cell death.

2.
Cell Rep ; 42(1): 112007, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36641752

ABSTRACT

Maintenance of stem cells requires the concerted actions of niche-derived signals and stem cell-intrinsic factors. Although Decapentaplegic (Dpp), a Drosophila bone morphogenetic protein (BMP) molecule, can act as a long-range morphogen, its function is spatially limited to the germline stem cell niche in the germarium. We show here that Integrator, a complex known to be involved in RNA polymerase II (RNAPII)-mediated transcriptional regulation in the nucleus, promotes germline differentiation by restricting niche-derived Dpp/BMP activity in the cytoplasm. Further results show that Integrator works in various developmental contexts to desensitize the cellular response to Dpp/BMP signaling during Drosophila development. Mechanistically, our results show that Integrator forms a multi-subunit complex with the type I receptor Thickveins (Tkv) and other Dpp/BMP signaling components and acts in a negative feedback loop to promote Tkv turnover independent of its transcriptional activity. Similarly, human Integrator subunits bind transforming growth factor ß (TGF-ß)/BMP signaling components and antagonize their activity, suggesting a conserved role of Integrator across metazoans.


Subject(s)
Drosophila Proteins , Transforming Growth Factor beta , Animals , Humans , Transforming Growth Factor beta/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Signal Transduction/physiology , Drosophila/metabolism , Cell Differentiation/physiology , Bone Morphogenetic Proteins/metabolism , Receptors, Cell Surface/metabolism , Protein Serine-Threonine Kinases/metabolism
3.
Dev Cell ; 56(13): 1976-1988.e4, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34146466

ABSTRACT

Ploidy variation is a cancer hallmark and is frequently associated with poor prognosis in high-grade cancers. Using a Drosophila solid-tumor model where oncogenic Notch drives tumorigenesis in a transition-zone microenvironment in the salivary gland imaginal ring, we find that the tumor-initiating cells normally undergo endoreplication to become polyploid. Upregulation of Notch signaling, however, induces these polyploid transition-zone cells to re-enter mitosis and undergo tumorigenesis. Growth and progression of the transition-zone tumor are fueled by a combination of polyploid mitosis, endoreplication, and depolyploidization. Both polyploid mitosis and depolyploidization are error prone, resulting in chromosomal copy-number variation and polyaneuploidy. Comparative RNA-seq and epistasis analysis reveal that the DNA-damage response genes, also active during meiosis, are upregulated in these tumors and are required for the ploidy-reduction division. Together, these findings suggest that polyploidy and associated cell-cycle variants are critical for increased tumor-cell heterogeneity and genome instability during cancer progression.


Subject(s)
Carcinogenesis/genetics , Genomic Instability/genetics , Neoplasms/genetics , Polyploidy , Animals , Cell Cycle/genetics , Drosophila melanogaster/genetics , Epistasis, Genetic/genetics , Gene Dosage/genetics , Genetic Heterogeneity , Humans , Meiosis/genetics , Mitosis/genetics , Neoplasms/pathology , Ploidies , RNA-Seq , Receptors, Notch/genetics , Signal Transduction
4.
J Vis Exp ; (168)2021 02 02.
Article in English | MEDLINE | ID: mdl-33616117

ABSTRACT

This protocol describes the allotransplantation of tumors in Drosophila melanogaster using an auto-nanoliter injection apparatus. With the use of an autoinjector apparatus, trained operators can achieve more efficient and consistent transplantation results compared to those obtained using a manual injector. Here, we cover topics in a chronological fashion: from the crossing of Drosophila lines, to the induction and dissection of the primary tumor, transplantation of the primary tumor into a new adult host and continued generational transplantation of the tumor for extended studies. As a demonstration, here we use Notch intracellular domain (NICD) overexpression induced salivary gland imaginal ring tumors for generational transplantation. These tumors can first be reliably induced in a transition-zone microenvironment within larval salivary gland imaginal rings, then allografted and cultured in vivo to study continued tumor growth, evolution, and metastasis. This allotransplantation method can be useful in potential drug screening programs, as well as for studying tumor-host interactions.


Subject(s)
Allografts/transplantation , Drosophila melanogaster/physiology , Nanotechnology/instrumentation , Neoplasm Transplantation , Neoplasms/pathology , Abdomen/pathology , Animals , Dissection , Injections , Salivary Glands/pathology , Tumor Microenvironment
5.
Evol Dev ; 22(6): 438-450, 2020 11.
Article in English | MEDLINE | ID: mdl-32078235

ABSTRACT

In embryos of distantly related bilaterian phyla, their lateral neural borders give rise to the peripheral nervous system elements, including various mechanosensory cells derived from migratory precursors, such as hair cells and dorsal root ganglion (DRG) neurons in vertebrates, bipolar tail neuron (BTN) in Ciona, chordotonal organ in Drosophila, and AVM/PVM in Caenorhabditis elegans. Developmental genetics studies had revealed a couple of transcription factors (TFs) regulating differentiation of mechanosensory cells shared by vertebrates and arthropods. However, unbiased systematic profiling of regulators is needed to demonstrate conservation of differentiation gene batteries for mechanosensory cells across bilaterians. At first, we observed that in both C. elegans Q neuroblasts and Drosophila lateral neuroectoderm, conserved NPB specifier Msx/vab-15 regulates Atoh1/lin-32, supporting the homology of mechanosensory neuron development in lateral neural border lineage of Ecdysozia. So we used C. elegans as a protostomia model. Single-cell resolution expression profiling of TFs and genetic analysis revealed a differentiation gene battery (Atonh1/lin-32, Drg11/alr-1, Gfi1/pag-3, Lhx5/mec-3, and Pou4/unc-86) for AVM/PVM mechanosensory neurons. The worm-gene battery significantly overlaps with both that of placode-derived Atonh1/lin-32-dependent hair cells and that of NPB-derived Neurogenin-dependent DRG neurons in vertebrates, supporting the homology of molecular mechanisms underlying the differentiation of neural border-derived mechanosensory cells between protostome and deuterostome. At last, Ciona BTN, the homolog of vertebrate DRG, also expresses Atonh1/lin-32, further supporting the homology notion and indicating a common origin of hair cells and DRG in vertebrate lineage.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Developmental , Invertebrates/genetics , Neurons/physiology , Vertebrates/genetics , Animals , Cell Differentiation , Invertebrates/embryology , Invertebrates/growth & development , Mechanotransduction, Cellular , Vertebrates/embryology , Vertebrates/growth & development
6.
J Biol Chem ; 294(14): 5666-5676, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30760524

ABSTRACT

Atg101 is an autophagy-related gene identified in worms, flies, mice, and mammals, which encodes a protein that functions in autophagosome formation by associating with the ULK1-Atg13-Fip200 complex. In the last few years, the critical role of Atg101 in autophagy has been well-established through biochemical studies and the determination of its protein structure. However, Atg101's physiological role, both during development and in adulthood, remains less understood. Here, we describe the generation and characterization of an Atg101 loss-of-function mutant in Drosophila and report on the roles of Atg101 in maintaining tissue homeostasis in both adult brains and midguts. We observed that homozygous or hemizygous Atg101 mutants were semi-lethal, with only some of them surviving into adulthood. Both developmental and starvation-induced autophagy processes were defective in the Atg101 mutant animals, and Atg101 mutant adult flies had a significantly shorter lifespan and displayed a mobility defect. Moreover, we observed the accumulation of ubiquitin-positive aggregates in Atg101 mutant brains, indicating a neuronal defect. Interestingly, Atg101 mutant adult midguts were shorter and thicker and exhibited abnormal morphology with enlarged enterocytes. Detailed analysis also revealed that the differentiation from intestinal stem cells to enterocytes was impaired in these midguts. Cell type-specific rescue experiments disclosed that Atg101 had a function in enterocytes and limited their growth. In summary, the results of our study indicate that Drosophila Atg101 is essential for tissue homeostasis in both adult brains and midguts. We propose that Atg101 may have a role in age-related processes.


Subject(s)
Autophagy-Related Proteins/metabolism , Drosophila Proteins/metabolism , Enterocytes/metabolism , Homeostasis , Intestines , Longevity , Neurons/metabolism , Animals , Autophagy-Related Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Loss of Function Mutation
7.
Aging Cell ; 18(1): e12854, 2019 02.
Article in English | MEDLINE | ID: mdl-30549175

ABSTRACT

By the end of neurogenesis in Drosophila pupal brain neuroblasts (NBs), nuclear Prospero (Pros) triggers cell cycle exit and terminates NB lifespan. Here, we reveal that in larval brain NBs, an intrinsic mechanism facilitates import and export of Pros across the nuclear envelope via a Ran-mediated nucleocytoplasmic transport system. In rangap mutants, the export of Pros from the nucleus to cytoplasm is impaired and the nucleocytoplasmic transport of Pros becomes one-way traffic, causing an early accumulation of Pros in the nuclei of the larval central brain NBs. This nuclear Pros retention initiates NB cell cycle exit and leads to a premature decrease of total NB numbers. Our data indicate that RanGAP plays a crucial role in this intrinsic mechanism that controls NB lifespan during neurogenesis. Our study may provide insights into understanding the lifespan of neural stem cells during neurogenesis in other organisms.


Subject(s)
Brain/cytology , Cell Nucleus/metabolism , Cellular Senescence , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , GTPase-Activating Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Animals , Cell Count , Cell Cycle , Drosophila melanogaster/metabolism , Larva/cytology , Neural Stem Cells/metabolism , Nuclear Envelope/metabolism
8.
Anal Chim Acta ; 982: 131-137, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28734352

ABSTRACT

It is of great importance to understand biochemical system's behavior toward environmental perturbation during the development of living organisms. Here a microfluidic platform for Drosophila embryo's online development and observation is presented. The system is capable of developing the embryo's anterior and posterior halves controlled at different temperature environments, and it can be easily coupled with a confocal microscope for real-time image acquisition. The microfluidic chip is consisted of a polymethylmethacrylate (PMMA) substrate with a thickness of 4.0 mm and a polydimethylsiloxane (PDMS) cover designed with a typical 'Y' channel with a depth of 400 µm, width of 800 µm. Temperature gradients were created across the anterior half and posterior half of the embryo by utilizing two streams of laminar flow with different temperatures. It was found that thermal gradient would result in asynchronous development of the two halves of the embryos, and the developing difference was related to the direction of thermal gradient. This may result from the presence of an unknown mechanism located in the anterior half of the embryo, which oversees nuclear division synchronicity. These observations would help better understand compensatory mechanisms of Drosophila embryo's development under environmental perturbations.


Subject(s)
Drosophila/embryology , Microfluidics/methods , Animals , Microscopy, Confocal , Temperature
9.
Proc Natl Acad Sci U S A ; 114(31): E6352-E6360, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716930

ABSTRACT

The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster, and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.


Subject(s)
Caenorhabditis elegans/embryology , Ciona intestinalis/embryology , Drosophila melanogaster/embryology , Gene Expression Regulation, Developmental/physiology , Neural Crest/embryology , Neural Plate/embryology , Neural Stem Cells/metabolism , Xenopus laevis/embryology , Animals , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , MSX1 Transcription Factor/metabolism , Paired Box Transcription Factors/metabolism , Peripheral Nervous System/cytology , Peripheral Nervous System/embryology , Single-Cell Analysis
10.
Development ; 143(1): 35-44, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26586222

ABSTRACT

The mechanism for the basal targeting of the Miranda (Mira) complex during the asymmetric division of Drosophila neuroblasts (NBs) is yet to be fully understood. We have identified conserved Phosphotyrosyl phosphatase activator (PTPA) as a novel mediator for the basal localization of the Mira complex in larval brain NBs. In mutant Ptpa NBs, Mira remains cytoplasmic during early mitosis and its basal localization is delayed until anaphase. Detailed analyses indicate that PTPA acts independent of and before aPKC to localize Mira. Mechanistically, our data show that the phosphorylation status of the T591 residue determines the subcellular localization of Mira and that PTPA facilitates the dephosphorylation of T591. Furthermore, PTPA associates with the Protein phosphatase 4 complex to mediate localization of Mira. On the basis of these results, a two-step process for the basal localization of Mira during NB division is revealed: cortical association of Mira mediated by the PTPA-PP4 complex is followed by apical aPKC-mediated basal restriction.


Subject(s)
Cell Cycle Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/embryology , Neural Stem Cells/metabolism , Neurogenesis/physiology , Protein Kinase C/metabolism , Animals , Asymmetric Cell Division/physiology , Cell Line , Phosphoprotein Phosphatases/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...