Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(4): 5183-5193, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35073689

ABSTRACT

All-inorganic CsPbI3 perovskites have great potential in tandem cells in combination with other photovoltaic devices. However, CsPbI3 perovskite solar cells (PSCs) still face a huge challenge, resulting in a low power conversion efficiency (PCE) relative to organic-inorganic PSCs. In this work, we introduced tetrabutylammonium acetate (TBAAc) as a buffer layer between the SnO2 electron-transport layer (ETL) and CsPbI3 all-inorganic perovskite film interface for the first time. TBAAc not only improved the conductivity of SnO2 ETL but also formed a 1D TBAPbI3 layer between the SnO2 ETL and the 3D CsPbI3 all-inorganic perovskite film, thereby enhancing the stability and passivating the surface defects of the CsPbI3 perovskite to fabricate high-efficiency carbon-counter electrode (CE)-based CsPbI3 solar cells. We fabricated carbon-CE-based hole-transporting layer ( HTL)-free PSCs with an FTO/SnO2/TBAAc/CsPbI3/C structure. The open-circuit voltage (Voc), short circuit current density (Jsc), PCE, and fill factor of the champion CsPbI3 PSCs simultaneously enhanced to 1.08 V, 17.48 mA/cm2, 12.79, and 67.8%, respectively. This PCE is currently one of the high efficiencies reported for the above planar-structured carbon-CE-based CsPbI3 PSCs to date. Moreover, the optimized device exhibits excellent stability, which retained over 83% of its initial PCE after 350 h. This work provides a facile way of simultaneous optimization of the SnO2 ETL and the CsPbI3 perovskite layer to fabricate stable and high-efficiency carbon-CE-based CsPbI3 PSCs.

2.
Small ; 16(17): e1907283, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32250013

ABSTRACT

Excellent power conversion efficiency (PCE) and stability are the primary forces that propel the all-inorganic cesium-based halide perovskite solar cells (PSCs) toward commercialization. However, the intrinsic high density of trap state and internal nonradiative recombination of CsPbIBr2 perovskite film are the barriers that limit its development. In the present study, a facile additive strategy is introduced to fabricate highly efficient CsPbIBr2 PSCs by incorporating sulfamic acid sodium salt (SAS) into the perovskite layer. The additive can control the crystallization behaviors and optimize morphology, as well as effectively passivate defects in the bulk perovskite film, thereby resulting in a high-quality perovskite. In addition, SAS in perovskite has possibly introduced an additional internal electric field effect that favors electron transport and injection due to inhomogeneous ion distribution. A champion PCE of 10.57% (steady-output efficiency is 9.99%) is achieved under 1 Sun illumination, which surpasses that of the contrast sample by 16.84%. The modified perovskite film also exhibits improved moisture stability. The unencapsulated device maintains over 80% initial PCE after aging for 198 h in air. The results provide a suitable additive for inorganic perovskite and introduce a new conjecture to explain the function of additives in PSCs more rationally.

SELECTION OF CITATIONS
SEARCH DETAIL
...