Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 21(3)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-33267007

ABSTRACT

Multiscale fuzzy entropy (MFE), as an enhanced multiscale sample entropy (MSE) method, is an effective nonlinear method for measuring the complexity of time series. In this paper, an improved MFE algorithm termed composite interpolation-based multiscale fuzzy entropy (CIMFE) is proposed by using cubic spline interpolation of the time series over different scales to overcome the drawbacks of the coarse-grained MFE process. The proposed CIMFE method is compared with MSE and MFE by analyzing simulation signals and the result indicates that CIMFE is more robust than MSE and MFE in analyzing short time series. Taking this into account, a new fault diagnosis method for rolling bearing is presented by combining CIMFE for feature extraction with Laplacian support vector machine for fault feature classification. Finally, the proposed fault diagnosis method is applied to the experiment data of rolling bearing by comparing with the MSE, MFE and other existing methods, and the recognition rate of the proposed method is 98.71%, 98.71%, 98.71%, 98.71% and 100% under different training samples (5, 10, 15, 20 and 25), which is higher than that of the existing methods.

2.
Entropy (Basel) ; 20(8)2018 Aug 13.
Article in English | MEDLINE | ID: mdl-33265691

ABSTRACT

Multiscale entropy (MSE), as a complexity measurement method of time series, has been widely used to extract the fault information hidden in machinery vibration signals. However, the insufficient coarse graining in MSE will result in fault pattern information missing and the sample entropy used in MSE at larger factors will fluctuate heavily. Combining fractal theory and fuzzy entropy, the time shift multiscale fuzzy entropy (TSMFE) is put forward and applied to the complexity analysis of time series for enhancing the performance of MSE. Then TSMFE is used to extract the nonlinear fault features from vibration signals of rolling bearing. By combining TSMFE with the Laplacian support vector machine (LapSVM), which only needs very few marked samples for classification training, a new intelligent fault diagnosis method for rolling bearing is proposed. Also the proposed method is applied to the experiment data analysis of rolling bearing by comparing with the existing methods and the analysis results show that the proposed fault diagnosis method can effectively identify different states of rolling bearing and get the highest recognition rate among the existing methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...