Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 423
Filter
1.
Int J Ophthalmol ; 17(3): 454-465, 2024.
Article in English | MEDLINE | ID: mdl-38721506

ABSTRACT

AIM: To identify disease-causative mutations in families with congenital cataract. METHODS: Two Chinese families with autosomal-dominant congenital cataract (ADCC) were recruited and underwent comprehensive eye examinations. Gene panel next-generation sequencing of common pathogenic genes of congenital cataract was performed in the proband of each family. Sanger sequencing was used to valid the candidate gene mutations and sequence the other family members for co-segregation analysis. The effect of sequence changes on protein structure and function was predicted through bioinformatics analysis. Major intrinsic protein (MIP)-wildtype and MIP-G29R plasmids were constructed and microinjected into zebrafish single-cell stage embryos. Zebrafish embryonic lens phenotypes were screened using confocal microscopy. RESULTS: A novel heterozygous mutation (c.85G>A; p.G29R) in the MIP gene was identified in the proband of one family. A known heterozygous mutation (c.97C>T; p.R33C; rs864309693) in MIP was found in the proband of another family. In-silico prediction indicated that the novel mutation might affect the MIP protein function. Zebrafish embryonic lens was uniformly transparent in both wild-type PCS2+MIP and mutant PCS2+MIP. CONCLUSION: Two missense mutations in the MIP gene in Chinese cataract families are identified, and one of which is novel. These findings expand the genetic spectrum of MIP mutations associated with cataracts. The functional studies suggest that the novel MIP mutation might not be a gain-of-function but a loss-of-function mutation.

2.
Life Sci ; 346: 122618, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614306

ABSTRACT

AIMS: This study was designed to investigate the role of growth arrest and DNA damage-inducible ß (GADD45B) in modulating fear memory acquisition and elucidate its underlying mechanisms. MAIN METHODS: Adeno-associated virus (AAV) that knockdown or overexpression GADD45B were injected into ventral hippocampal CA1 (vCA1) by stereotactic, and verified by fluorescence and Western blot. The contextual fear conditioning paradigm was employed to examine the involvement of GADD45B in modulating aversive memory acquisition. The Y-maze and novel location recognition (NLR) tests were used to examine non-aversive cognition. The synaptic plasticity and electrophysiological properties of neurons were measured by slice patch clamp. KEY FINDINGS: Knockdown of GADD45B in the vCA1 significantly enhanced fear memory acquisition, accompanied by an upregulation of long-term potentiation (LTP) expression and intrinsic excitability of vCA1 pyramidal neurons (PNs). Conversely, overexpression of GADD45B produced the opposite effects. Notably, silencing the activity of vCA1 neurons abolished the impact of GADD45B knockdown on fear memory development. Moreover, mice with vCA1 GADD45B overexpression exhibited impaired spatial cognition, whereas mice with GADD45B knockdown did not display such impairment. SIGNIFICANCE: These results provided compelling evidence for the crucial involvement of GADD45B in the formation of aversive memory and spatial cognition.


Subject(s)
CA1 Region, Hippocampal , Fear , GADD45 Proteins , Mice, Inbred C57BL , Animals , Male , Fear/physiology , Mice , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Cognition/physiology , Memory/physiology , Long-Term Potentiation/physiology , Maze Learning/physiology , Neuronal Plasticity/physiology , Antigens, Differentiation/metabolism , Antigens, Differentiation/genetics , Gene Knockdown Techniques
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653353

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and moderate exercise holds promise in ameliorating the ongoing neurodegeneration and cognitive decline. Here, we investigated whether exercise-enriched blood plasm could yield a beneficial therapeutic effect on AD pathologies and cognitive decline in transgenic AD (P301S) mice. In this investigation, a cohort of 2-month-old C57BL/6 mice were granted continuous access to either a running wheel or a fixed wheel for 6 weeks. After that, their plasmas were extracted and subsequently injected intravenously into 4.5-month-old P301S mice biweekly over a 6-week period. A comprehensive methodology was then employed, integrating behavioral tests, pathology assessments, and biochemical analyses to unveil the potential anti-dementia implications of exercise-enriched blood plasma in P301S mice. Upon systemic administration, the findings revealed a noteworthy attenuation of hippocampus-dependent behavioral impairments in P301S mice. Conversely, blood plasma from sedentary counterparts exhibited no discernible impact. These effects were intricately associated with the mitigation of neuroinflammation, the augmentation of hippocampal adult neurogenesis, and a reduction of synaptic impairments following the administration of exercise-enriched blood plasma. These findings advance the proposition that administering exercise-enriched blood plasma may serve as an effective prophylactic measure against AD, opening avenues for further exploration and potential therapeutic interventions.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Models, Animal , Hippocampus , Mice, Inbred C57BL , Mice, Transgenic , Physical Conditioning, Animal , Animals , Alzheimer Disease/therapy , Alzheimer Disease/blood , Hippocampus/metabolism , Hippocampus/pathology , Physical Conditioning, Animal/methods , Cognitive Dysfunction/therapy , Cognitive Dysfunction/blood , Mice , Plasma/metabolism , Male , Neurogenesis
4.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542408

ABSTRACT

Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Septins/metabolism , Fungal Proteins/metabolism , Magnaporthe/physiology , Cytoskeleton/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Spores, Fungal/metabolism , Gene Expression Regulation, Fungal
5.
Inorg Chem ; 63(13): 6016-6025, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38498698

ABSTRACT

Exploring advanced electrocatalysts for overall seawater splitting is of great significance for large-scale green hydrogen production in which interface engineering has been considered as an effective strategy to enhance the intrinsic activities of the electrocatalysts. In this work, CeOx-modified NiCo2O4 nanoneedle arrays are designed and constructed in situ grown on Ni foam (NF) through a facile two-step synthesis method. Density functional theory calculations reveal that the strong interaction between CeOx and NiCo2O4 can regulate the electronic states of metal surfaces and optimize the electronic structures of the materials, essentially improving the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) properties. Specifically, in alkaline electrolytes, CeOx@NiCo2O4/NF exhibits superior electrocatalytic activities and stabilities, requiring overpotentials of 238 mV for the OER and 144 mV for the HER to achieve a current density of 10 mA cm-2. When applied to a simulated seawater splitting device, the CeOx@NiCo2O4/NF also maintains a battery voltage of 1.66 V to reach 10 mA cm-2 and exhibits good stability for over 60 h, with high faradic efficiencies (FEs) close to 100% for both the OER and HER.

6.
Sci Rep ; 14(1): 6848, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514737

ABSTRACT

Carbazole compounds are widely used in determining the direction of petroleum migration, but the effect of thermal maturity on carbazoles is still ambiguity. In this paper, using compaction pyrolysis simulation experiments, artificial mature samples with vitrinite reflectance (Ro) range from 0.38 to 3.0% were acquired. And the content and composition change characteristics of carbazole compounds were analyzed in coal source rocks. The experimental results showed that thermal maturity controls the generation of a large amount of carbazole compounds in coal rocks. Compared with the low mature stage, the content of carbazole compounds was about 10-100 times higher in the mature stage. With the increasing maturity, in the coal sample, the content of carbazole compounds showed a trend of first increasing and then decreasing. In derivatives of carbazole, the corresponding maturity for the maximum generation of ethylcarbazole (EC), dimethylcarbazole (DMCA), methylcarbazole (MCA), carbazole (CA) and benzocarbazole (BCA) performed the increasing sequence. With the increasing maturity, the relative abundance of 2-MCA, 1,7-DMCA and benzo[a]carbazole increased with the increasing maturity, while 4-MCA, 1,4-DMCA and benzo[c]carbazole gradually decreased. Benzocarbazole ratio [a]/[a] +[ c] varies only in a narrow range 0.36-0.61 in the entire maturity range, suggesting limited maturity dependence. The experimental conclusion provides more theoretical basis for future geochemical analysis using carbazole compounds.

7.
Mol Nutr Food Res ; 68(7): e2300669, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491393

ABSTRACT

Alzheimer's disease (AD) is the most prevailing form of dementia, with long-term high-fat diet (HFD) consumption being a pivotal contributor to AD pathogenesis. As microglial dysfunction is a crucial factor in the AD onset, it becomes imperative to explore the effects of HFD on microglial function and AD pathogenesis. In the present study, 3xTg-AD model mice at the age of 9-month are subjected to random allocation, with one group receiving a standard diet (ND) and the other an HFD for 3 months. Subsequently, transcriptomic profiling of microglia unveils that HFD alters fatty acid metabolism and mediates T cell infiltration. Within the hippocampus, microglia exhibit aberrant morphology and lipid accretion in response to the HFD, evidenced by conspicuously enlarged microglial cell bodies and accumulation of lipid droplets. These lipid-droplet-accumulating microglia exhibit diminished migratory capacity and compromise plaque consolidation, thereby exacerbating the accumulation of ß-amyloid. Noteworthy, the HFD induces T cell infiltration, thereby aggravating neuroinflammation and Tau phosphorylation. Morris water maze test reveals that HFD-consuming mice display marked impairment in memory performance. In summary, this study demonstrates that prolonged HFD consumption exacerbates amyloid deposition, tau pathology, and cognitive deficits, which is associated with the accumulation of lipid droplets within microglia.


Subject(s)
Alzheimer Disease , Diet, High-Fat , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Lipids , Mice, Transgenic , Microglia , tau Proteins/metabolism
8.
Diagn Microbiol Infect Dis ; 109(1): 116158, 2024 May.
Article in English | MEDLINE | ID: mdl-38401184

ABSTRACT

Post-discharge re-positivity of Omicron SARS-CoV-2 is challenging for the sufficient control of this pandemic. However, there are few studies about the risk of re-positivity. We aimed to explore the association of neutralizing antibodies (nAbs, AU/mL) with the incidence of re-positivity among patients recovered from COVID-19. A retrospective cohort study selected 318 Omicron-infected patients was conducted in China between December 2021 and April 2022. The peak value of nAb levels (nAb-peak) within 14 days of disease onset was defined as the baseline and was mainly used for the subsequent analyses. In the unadjusted, minimally adjusted, fully adjusted, and additionally adjusted for IgG models, a per-standard deviation (SD) increase in the nAb-peak values was significantly associated with a 59 %, 59 %, 50 %, and 75 % decreased risk of Omicron SARS-CoV-2 re-positivity during post-discharge surveillance, respectively. Stratified analyses showed no significant changes in the relationship between nAbs and re-positivity. Our study suggested that the increase in baseline nAb levels independently associated with a low risk of re-positivity in patients recovered from COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , RNA, Viral , Aftercare , Retrospective Studies , Patient Discharge , Antibodies, Neutralizing , Antibodies, Viral
9.
J Neurochem ; 168(6): 1080-1096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38317263

ABSTRACT

Sevoflurane, the predominant pediatric anesthetic, has been linked to neurotoxicity in young mice, although the underlying mechanisms remain unclear. This study focuses on investigating the impact of neonatal sevoflurane exposure on cell-type-specific alterations in the prefrontal cortex (PFC) of young mice. Neonatal mice were subjected to either control treatment (60% oxygen balanced with nitrogen) or sevoflurane anesthesia (3% sevoflurane in 60% oxygen balanced with nitrogen) for 2 hours on postnatal days (PNDs) 6, 8, and 10. Behavioral tests and single-nucleus RNA sequencing (snRNA-seq) of the PFC were conducted from PNDs 31 to 37. Mechanistic exploration included clustering analysis, identification of differentially expressed genes (DEGs), enrichment analyses, single-cell trajectory analysis, and genome-wide association studies (GWAS). Sevoflurane anesthesia resulted in sociability and cognition impairments in mice. Novel specific marker genes identified 8 distinct cell types in the PFC. Most DEGs between the control and sevoflurane groups were unique to specific cell types. Re-defining 15 glutamatergic neuron subclusters based on layer identity revealed their altered expression profiles. Notably, sevoflurane disrupted the trajectory from oligodendrocyte precursor cells (OPCs) to oligodendrocytes (OLs). Validation of disease-relevant candidate genes across the main cell types demonstrated their association with social dysfunction and working memory impairment. Behavioral results and snRNA-seq collectively elucidated the cellular atlas in the PFC of young male mice, providing a foundation for further mechanistic studies on developmental neurotoxicity induced by anesthesia.


Subject(s)
Anesthetics, Inhalation , Prefrontal Cortex , Sevoflurane , Animals , Sevoflurane/toxicity , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Mice , Anesthetics, Inhalation/toxicity , Male , Animals, Newborn , Female , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Genome-Wide Association Study
10.
Chin J Traumatol ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38369429

ABSTRACT

PURPOSE: To explore the clinical characteristics of pediatric pelvic fracturs caused by traffic accidents and to analyze the accompanying injuries and complications. METHODS: A total of 222 cases involved traffic accidents was enrolled in this case-control study. The data of children with pelvic fractures caused by traffic accidents who were admitted to our hospital from January 2006 to December 2021 were analyzed retrospectively. Sex, age, Tile classification, abbreviated injury scale score, injury severity score, mortality, and accompanying injuries were studied. The ANOVA was used for measurement data, and the non-parametric rank sum test was used for non-normally distributed data. The Fisher's exact probability method was used for the count data. RESULTS: Of all enrolled cases, 140 are boys and 82 are girls, including 144 aged < 6 years, 65 aged between 6 and 12 years, and 13 aged > 12 years. Depending on the injury mechanism, there are 15 cases involving pedestrians vs. motorcycles (PVM), 91 cases involving pedestrians vs. passenger cars (PVC), 78 cases involving pedestrians vs. commercial vehicles (PVV), and 38 cases involving motor vehicles vs. motor vehicles (MVM). Associated injuries are reported in 198 cases (89.2%), primarily involving the abdomen injury in 144 cases (64.9%), and lower limb injury in 99 cases (44.6%). PVV injury involves longer hospital stay (p = 0.004). Intensive care unit admission rate is significantly higher in the MVM group than in other groups (p = 0.004). Head injury (p = 0.001) and face injury (p = 0.037) are more common in the MVM group, whereas abdominal injury (p = 0.048) and lower limb injury (p = 0.037) are more common in the PVV group. In the MVM group, the brain injury (p = 0.004) and femoral neck injury (p = 0.044) are more common. In the PVM group, the mediastinum (p = 0.004), ear (p = 0.009), lumbar vertebrae (p = 0.008), and spinal cord (p = 0.011) are the most vulnerable regions, while in the PVV group, the perineum (p < 0.001), urethra (p = 0.001), rectum (p = 0.006), anus (p = 0.004), and lower limb soft tissues (p = 0.024) are the most vulnerable regions. Children aged > 12 years have higher pelvic abbreviated injury scale scores (p = 0.019). There are significant differences in the classification of pelvic fractures among children < 6, 6 - 12, and > 12 years of age, with Tile C being more likely to occur in children > 12 years of age (p = 0.033). Children aged > 12 years are more likely to sustain injuries to the spleen (p = 0.022), kidneys (p = 0.019), pancreas (p < 0.001), lumbar vertebrae (p = 0.013), and sacrum (p = 0.024). The MVM group has the highest complication rate (p = 0.003). CONCLUSION: PVC is the leading cause of the abdomen and lower extremities injury and has the most concomitant injuries. Different traffic injuries often lead to different associated injuries. Older children are more likely to sustain more severe pelvic fractures and peripelvic organs injuries. The MVM group has the highest extent of injury and complication rates.

11.
Cell Commun Signal ; 22(1): 19, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195499

ABSTRACT

The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.


Subject(s)
Ascomycota , Cell Cycle , Autophagy , Cell Wall
12.
Small ; 20(3): e2304945, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37675818

ABSTRACT

Reversible three-electron redox of Cr3+ /Cr6+ in layered cathode materials for rechargeable batteries is very attractive in layered cathode materials, which leads to high capacity and energy density for rechargeable batteries. However, the poor reversibility and Cr-ion migration make it very challenging. In this work, by introducing V ions into tetrahedral sites of layer-structured NaCrO2 , reversible three-electron redox of Cr3+ /Cr6+ is realized successfully in NaCr0.92 V0.05 O2 (NCV05) cathode for potassium-ion batteries with a cut-off voltage of 4.0 V. V ions can weaken the attraction of Cr to electrons, leading to enhanced valence change of Cr ions. On the other hand, V in tetrahedral sites can facilitate the reversible migration of Cr between octahedral and tetrahedral sites via coulombic repulsion to realize the reversible redox between Cr3+ and Cr6+ during charge and discharge processes. In addition, V ions can inhibit the phase transition from O3 phase to O'3 phase during the charge process by adjusting the crystal lattices. As a result, the NaCr0.92 V0.05 O2 cathode exhibits a high reversible capacity of 130 mAh g-1 with promising cycle stability and rate capability. The strategy opens new opportunity for developing high-capacity cathode materials for potassium-ion batteries.

13.
Pest Manag Sci ; 80(3): 996-1007, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37830147

ABSTRACT

BACKGROUND: The sugarcane borer Diatraea saccharalis (Lepidoptera) is a key pest on sugarcane and other grasses in the Americas. Biological control as well as insecticide treatments are used for pest management, but economic losses are still significant. The use of female sex pheromones for mating disruption or mass trapping in pest management could be established for this species, provided that economical production of pheromone is available. RESULTS: Combining in vivo labelling studies, differential expression analysis of transcriptome data and functional characterisation of insect genes in a yeast expression system, we reveal the biosynthetic pathway and identify the desaturase and reductase enzymes involved in the biosynthesis of the main pheromone component (9Z,11E)-hexadecadienal, and minor components hexadecanal, (9Z)-hexadecenal and (11Z)-hexadecenal. We next demonstrate heterologous production of the corresponding alcohols of the pheromone components, by expressing multiple steps of the biosynthetic pathway in yeast. CONCLUSION: Elucidation of the genetic basis of sex pheromone biosynthesis in D. saccharalis, and heterologous expression in yeast, paves the way for biotechnological production of the pheromone compounds needed for pheromone-based pest management of this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Moths , Saccharum , Sex Attractants , Female , Animals , Sex Attractants/chemistry , Saccharomyces cerevisiae , Moths/genetics , Pheromones
14.
Plant Commun ; 5(2): 100724, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37771153

ABSTRACT

Rice blast is a devastating disease worldwide, threatening rice production and food security. The blast fungus Magnaporthe oryzae invades the host via the appressorium, a specialized pressure-generating structure that generates enormous turgor pressure to penetrate the host cuticle. However, owing to ongoing evolution of fungicide resistance, it is vitally important to identify new targets and fungicides. Here, we show that Trs85, a subunit of the transport protein particle III complex, is essential for appressorium-mediated infection in M. oryzae. We explain how Trs85 regulates autophagy through Ypt1 (a small guanosine triphosphatase protein) in M. oryzae. We then identify a key conserved amphipathic α helix within Trs85 that is associated with pathogenicity of M. oryzae. Through computer-aided screening, we identify a lead compound, SP-141, that affects autophagy and the Trs85-Ypt1 interaction. SP-141 demonstrates a substantial capacity to effectively inhibit infection caused by the rice blast fungus while also exhibiting wide-ranging potential as an antifungal agent with broad-spectrum activity. Taken together, our data show that Trs85 is a potential new target and that SP-141 has potential for the control of rice blast. Our findings thus provide a novel strategy that may help in the fight against rice blast.


Subject(s)
Antifungal Agents , Ascomycota , Indoles , Magnaporthe , Pyridines , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Antifungal Agents/metabolism , Magnaporthe/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
15.
Curr Med Sci ; 43(6): 1084-1095, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924385

ABSTRACT

OBJECTIVE: Post-stroke cognitive impairment (PSCI) develops in approximately one-third of stroke survivors and is associated with ingravescence. Nonetheless, the biochemical mechanisms underlying PSCI remain unclear. The study aimed to establish an ischemic mouse model by means of transient unilateral middle cerebral artery occlusions (MCAOs) and to explore the biochemical mechanisms of p25/cyclin-dependent kinase 5 (CDK5)-mediated tau hyperphosphorylation on the PSCI behavior. METHODS: Cognitive behavior was investigated, followed by the detection of tau hyperphosphorylation, mobilization, activation of kinases and/or inhibition of phosphatases in the lateral and contralateral cerebrum of mice following ischemia in MACO mice. Finally, we treated HEK293/tau cells with oxygen-glucose deprivation (OGD) and a CDK5 inhibitor (Roscovitine) or a GSK3ß inhibitor (LiCl) to the roles of CDK5 and GSK3ß in mediating ischemia-reperfusion-induced tau phosphorylation. RESULTS: Ischemia induced cognitive impairments within 2 months, as well as causing tau hyperphosphorylation and its localization to neuronal somata in both ipsilateral and contralateral cerebra. Furthermore, p25 that promotes CDK5 hyperactivation had significantly higher expression in the mice with MCAO than in the shamoperation (control) group, while the expression levels of protein phosphatase 2 (PP2A) and the phosphorylation level at Tyr307 were comparable between the two groups. In addition, the CDK5 inhibitor rescued tau from hyperphosphorylation induced by OGD. CONCLUSION: These findings demonstrate that upregulation of CDK5 mediates tau hyperphosphorylation and localization in both ipsilateral and contralateral cerebra, contributing to the pathogenesis of PSCI.


Subject(s)
Cerebrum , Cognitive Dysfunction , Animals , Humans , Mice , Cerebrum/metabolism , Cognition , Cognitive Dysfunction/etiology , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , Ischemia , tau Proteins/genetics , tau Proteins/metabolism
16.
PLoS Pathog ; 19(11): e1011733, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37943805

ABSTRACT

Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.


Subject(s)
Plants , Sphingolipids , Humans , Animals , Sphingolipids/chemistry , Sphingolipids/metabolism , Plants/metabolism , Fungi/metabolism , Signal Transduction/physiology , Cell Membrane/metabolism , Mammals
17.
Front Plant Sci ; 14: 1278715, 2023.
Article in English | MEDLINE | ID: mdl-38023849

ABSTRACT

Objective: This study aimed to analyze the fermentation quality, microbial community, and volatile metabolites of oat silage harvested at two different stages, while examining the correlation between microorganisms and volatile metabolites. Methods: Oats were harvested at two growth stages (pre-heading [PRH] and post-heading [POH] stages), followed by 90 days of natural fermentation, with 6 replicates per treatment. Pre- and post-silage samples were randomly selected for nutrient composition, fermentation parameters, microbial population, and high-throughput sequencing analysis. Volatile metabolomics analysis was also performed on samples after 90 days of fermentation to detect differences in flavor quality after silage. Results: The effect of growth stage on the nutrient content of oats was significant, with pre-heading oats having higher crude protein and post-heading oats having higher water soluble carbohydrates content (p < 0.05). Following a 90-day fermentation period, the pH and ammonia nitrogen/total nitrogen levels in the PRH-90 (silage from pre-heading oats after 90 days of fermentation) group demonstrated a significant decrease (p < 0.05), whereas the lactic acid content was notably higher compared to the POH-90 (silage from post-heading oats after 90 days of fermentation) group (p <0.05). Lactiplantibacillus dominated in the PRH-90 group and Enterococcus dominated in the POH-90 group, with abundances of (> 86%) and (> 87%), respectively. The differential volatile metabolites of the two treatment groups were dominated by esters and terpenoids, and the differences in flavor were mainly concentrated in sweet, green, and fruity odors. The results of Kyoto encyclopedia of genes and genomes pathway enrichment analysis demonstrated three major metabolic pathways: phenylpropanoid biosynthesis, phenylalanine metabolism, and biosynthesis of secondary metabolites. Specific microorganisms were significantly correlated with flavor indicators and flavor metabolites. Lactiplantibacillus was significantly positively correlated with flavor substances indicating sweet and fruity flavors, contributing to good flavor, while Enterococcus was significantly and positively correlated with flavor substances indicating bad flavors. Conclusion: In summary, growth stage had significant effects on nutritional components, fermentation parameters and flavor quality of oats, with the fermentation process dominated by Lactiplantibacillus leading to good flavor, while the fermentation process dominated by Enterococcus led to the development of poor flavor.

18.
Front Endocrinol (Lausanne) ; 14: 1273634, 2023.
Article in English | MEDLINE | ID: mdl-37867521

ABSTRACT

Background: Glioma is a prevalent and lethal brain malignancy; despite current treatment options, the prognosis remains poor. Therefore, immunotherapy has emerged as a promising therapeutic strategy. However, research trends and hotspots in glioma immunotherapy have not been systematically analyzed. This study aimed to elucidate global research trends and knowledge structures regarding immunotherapy for glioma using bibliometric analysis. Methods: Publications related to immunotherapy for glioma from 2000-2023 were retrieved from Web of Science Core Collection database (WoSCC). We conducted quantitative analysis and visualization of research trends using various tools, including VOSviewer (1.6.18), CiteSpace (5.7 R3), Microsoft Charticulator, and the Bibliometrix package in R. Results: A total of 4910 publications were included. The number of annual publications exhibited an obvious upward trend since 2019. The USA was the dominant country in terms of publication output and centrality. Frontiers in Immunology published the most articles. Harvard Medical School ranked first in productivity among institutions. Sampson, John H. Ph.D. is the most prolific author in the field with 88 articles and a total of 7055 citations. Clinical Cancer Research has the largest total number and impact factor. Analysis of keywords showed immunotherapy, glioblastoma, immunotherapy, and clinical trials as hot topics. The tumor microenvironment, cell death pathways, chimeric antigen receptor engineering, tumor-associated macrophages, and nivolumab treatment represent indicating shifts in the direction of future glioma immunotherapy development. Conclusion: This bibliometric analysis systematically delineated global landscapes and emerging trends in glioma immunotherapy research. This study highlighted the prominence of Chimeric Antigen Receptor T-cell (CAR-T), Programmed Death-1 (PD-1), and nivolumab in current glioma immunotherapy research. The growing emphasis on specific neoantigens and prognostic tumor markers suggests potential avenues for future exploration. Furthermore, the data underscores the importance of strengthened international collaboration in advancing the field.


Subject(s)
Glioma , Receptors, Chimeric Antigen , Humans , Nivolumab , Glioma/therapy , Immunotherapy , Bibliometrics , Tumor Microenvironment
19.
Exp Ther Med ; 26(5): 516, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37854499

ABSTRACT

Globally, liver cancer ranks among the most lethal cancers, with chemotherapy being one of its primary treatments. However, poor selectivity, systemic toxicity, a narrow treatment window, low response rate and multidrug resistance limit its clinical application. Liver-targeted nanoparticles (NPs) exhibit excellent targeted delivery ability and promising effectivity in treating liver cancer. The present study aimed to investigate the liver-targeting and anti-liver cancer effect of artesunate (ART)-loaded and glycyrrhetinic acid (GA)-decorated polyethylene glycol (PEG)-poly (lactic-co-glycolic acid) (PLGA) (ART/GA-PEG-PLGA) NPs. GA-coated NPs significantly increased hepatoma-targeted cellular uptake, with micropinocytosis and caveolae-mediated endocytosis as its chief internalization pathways. Moreover, ART/GA-PEG-PLGA NPs exhibited pro-apoptotic effects on HepG2 cells, mainly via the induction of a high level of reactive oxygen species, decline in mitochondrial membrane potential and induction of cell cycle arrest. Additionally, ART/GA-PEG-PLGA NPs induced internal apoptosis pathways by upregulating the activity of cleaved caspase-3/7 and expression of cleaved poly (ADP-Ribose)-polymerase and Phos-p38 mitogen-activated protein kinase in HepG2 cells. Furthermore, ART/GA-PEG-PLGA NPs exhibited higher liver accumulation and longer mean retention time, resulting in increased bioavailability. Finally, ART/GA-PEG-PLGA NPs promoted the liver-targeting distribution of ART, increased the retention time and promoted its antitumour effects in vivo. Therefore, ART/GA-PEG-PLGA NPs afforded excellent hepatoma-targeted delivery and anti-liver cancer efficacy, and thus, they may be a promising strategy for treating liver cancer.

20.
Opt Express ; 31(16): 25477-25489, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710433

ABSTRACT

Broader spectra, lower reflectivity and higher reliability are the performance requirements for broadband antireflective (BBAR) films. In this work, a BBAR film structure was proposed, which maintains extremely low reflectivity, ultra-wide spectra, low polarization sensitivity and practical reliability. The BBAR film consists of a dense multilayer interference stack on the bottom and a nano-grass-like alumina (NGLA) layer with a gradient low refractive index distribution on the top. The film was deposited by atomic layer deposition, while the NGLA layer was formed by means of a hot water bath on Al2O3 layer. The top NGLA layer has extremely high porosity and ultra-low refractive index, along with extremely fragile structure. To surmount the fragility of NGLA layer, a sub-nano layer of SiO2 was grown by atomic layer deposition to solidify its structure and also to adjust the refractive index with different thicknesses of SiO2. Finally, in the wide wavelength range of 400-1100 nm, the average transmittance of the double-sided coated fused quartz reaches 99.2%. The absorption, light scattering, reliability and polarization characteristics of BBAR films were investigated. An optimized BBAR film with low polarization-sensitivity and improved reliability was realized, which should be potentially promising for application in optical systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...