Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36556526

ABSTRACT

Complex structure reaction-bonded silicon carbide (RB-SiC) can be prepared by reactive melt infiltration (RMI) and digital light processing (DLP). However, the strength and modulus of RB-SiC prepared by DLP are not sufficient, due to its low solid content (around 40 vol.%), compared with the traditional fabrication techniques (solid content > 60 vol.%). With this understanding, a new method to improve the properties of RB-SiC was proposed, by the impregnation of composite precursor into the porous preform. The composite precursor was composed of phenolic (PF) resin and furfuryl alcohol (FA). PF and FA were pyrolyzed at 1850 °C to obtain amorphous carbon and graphite into the porous preform, respectively. The effects of multiphase carbon on the microstructure and performance of RB-SiC was studied. When the mass ratio of PF to FA was 1/4, the solid content of RB-SiC increased from 40 vol.% to 68.6 vol.%. The strength, bulk density and modulus were 323.12 MPa, 2.94 g/cm3 and 348.83 Gpa, respectively. This method demonstrated that the reaction process between liquid Si and carbon could be controlled by the introduction of multiphase carbon into the porous preforms, which has the potential to regulate the microstructure and properties of RB-SiC prepared by additive manufacturing or other forming methods.

2.
Materials (Basel) ; 15(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268948

ABSTRACT

The high topological silicon carbide (SiC) ceramics can be prepared by stereolithography (SLA) combined with liquid silicon infiltration (LSI) techniques. This paper aims to enhance the performance of SiC ceramics prepared by SLA and LSI techniques via the cyclic impregnation/carbonization of the precursor of carbon source solution before LSI. The effects of impregnation/carbonization cycles on the microstructure and properties of C/SiC preform and sintered body were analyzed in detail. The results show that, with the increase of impregnation/carbonization cycles, the porosity in the C/SiC preform decreases obviously and the content of secondary SiC in the sintered body increases effectively. Especially, when the impregnation/carbonization cycle was performed twice, the sintered body had the optimal mechanical properties. The value of flexural strength, bulk density and elastic modulus were 258.63 ± 8.33 MPa, 2.95 ± 0.02 g/cm3 and 425.16 ± 14.15 GPa, respectively. In addition, the thermal dimensional stability of sintered body was also improved by this method. This method proves that SiC ceramics prepared by SLA combined with LSI have the potential of applications in space optical mirrors.

SELECTION OF CITATIONS
SEARCH DETAIL
...