Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 967: 176405, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38341078

ABSTRACT

The function and regulatory mechanisms of 5-methylcytidine (m5C) in oligoasthenospermia remain unclear. In this study, we made a mouse model of oligoasthenospermia through the administration of busulfan (BUS). For the first time, we demonstrated that m5C levels decreased in oligoasthenospermia. The m5C levels were upregulated through the treatments of 5-methylcytidine. The testicular morphology and sperm concentrations were improved via upregulating m5C. The cytoskeletal regenerations of testis and sperm were accompanying with m5C treatments. m5C treatments improved T levels and reduced FSH and LH levels. The levels of ROS and MDA were significantly reduced through m5C treatments. RNA sequencing analysis showed m5C treatments increased the expression of genes involved in spermatid differentiation/development and cilium movement. Immunofluorescent staining demonstrated the regeneration of cilium and quantitative PCR (qPCR) confirmed the high expression of genes involved in spermatogenesis. Collectively, our findings suggest that the upregulation of m5C in oligoasthenospermia facilitates testicular morphology recovery and male infertility via multiple pathways, including cytoskeletal regeneration, hormonal levels, attenuating oxidative stress, spermatid differentiation/development and cilium movement. m5C may be a potential therapeutic agent for oligoasthenospermia.


Subject(s)
Busulfan , Cytidine/analogs & derivatives , Semen , Male , Mice , Animals , Busulfan/pharmacology , Spermatogenesis/physiology , Testis
2.
Bioengineering (Basel) ; 10(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37370576

ABSTRACT

The intelligent classification of heart-sound signals can assist clinicians in the rapid diagnosis of cardiovascular diseases. Mel-frequency cepstral coefficients (MelSpectrums) and log Mel-frequency cepstral coefficients (Log-MelSpectrums) based on a short-time Fourier transform (STFT) can represent the temporal and spectral structures of original heart-sound signals. Recently, various systems based on convolutional neural networks (CNNs) trained on the MelSpectrum and Log-MelSpectrum of segmental heart-sound frames that outperform systems using handcrafted features have been presented and classified heart-sound signals accurately. However, there is no a priori evidence of the best input representation for classifying heart sounds when using CNN models. Therefore, in this study, the MelSpectrum and Log-MelSpectrum features of heart-sound signals combined with a mathematical model of cardiac-sound acquisition were analysed theoretically. Both the experimental results and theoretical analysis demonstrated that the Log-MelSpectrum features can reduce the classification difference between domains and improve the performance of CNNs for heart-sound classification.

3.
Mol Psychiatry ; 27(10): 4323-4334, 2022 10.
Article in English | MEDLINE | ID: mdl-35879403

ABSTRACT

Hyperphosphorylation of the microtubule associated protein tau is associated with several neurodegenerative diseases including Alzheimer's Disease (AD), collectively referred to as tauopathies. However, the mechanisms by which tau is linked to synaptic dysfunction and memory impairment remain unclear. To address this question, we constructed a mouse model with brain-specific deficiency of SIRT1 (SIRT1 flox/Cre + ). Here, we show that increase of site-specific phosphorylation of tau is coupled with the strengthened O-GlcNAcylation of tau triggered by reduced O-GlcNAcase (OGA) and increased O-GlcNAc transferase (OGT) protein level in the brain of SIRT1 flox/Cre+ mice. SIRT1 deletion in mice brain changes the synaptosomal distribution of site-specific phospho-tau. Learning and memory deficiency induced by dendritic spine deficits and synaptic dysfunction are revealed via SIRT1 flox/Cre+ mice. Our results provide evidence for SIRT1 as a potential therapeutic target in clinical tauopathies.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Mice , Sirtuin 1/genetics , Sirtuin 1/metabolism , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Alzheimer Disease/metabolism , Phosphorylation , Brain/metabolism
4.
Front Oncol ; 12: 780950, 2022.
Article in English | MEDLINE | ID: mdl-35280739

ABSTRACT

Background: Pyroptosis is regulated by long non-coding RNAs (lncRNAs) in ovarian cancer (OC). Therefore, a comprehensive analysis of pyroptosis-related lncRNAs (PRLs) in OC is crucial for developing therapeutic strategies and survival prediction. Methods: Based on public database raw data, mutations in the landscape of pyroptosis-related genes (PRGs) in patients with OC were investigated thoroughly. PRLs were identified by calculating Pearson correlation coefficients. Cox and LASSO regression analyses were performed on PRLs to screen for lncRNAs participating in the risk signature. Furthermore, receiver operating characteristic (ROC) curves, Kaplan-Meier survival analyses, decision curve analysis (DCA) curves, and calibration curves were used to confirm the clinical benefits. To assess the ability of the risk signature to independently predict prognosis, it was included in a Cox regression analysis with clinicopathological parameters. Two nomograms were constructed to facilitate clinical application. In addition, potential biological functions of the risk signature were investigated using gene function annotation. Subsequently, immune-related landscapes and BRCA1/2 mutations were compared in different risk groups using diverse bioinformatics algorithms. Finally, we conducted a meta-analysis and in-vitro assays on alternative lncRNAs. Results: A total of 374 patients with OC were randomized into training and validation cohorts (7:3). A total of 250 PRLs were selected from all the lncRNAs. Subsequently, a risk signature (DICER1-AS1, MIR600HG, AC083880.1, AC109322.1, AC007991.4, IL6R-AS1, AL365361.1, and AC022098.2) was constructed to distinguish the risk of patient survival. The ROC curve, K-M analysis, DCA curve, and calibration curve indicated excellent predictive performance for determining overall survival (OS) based on the risk signature in each cohort (p < 0.05). The Cox regression analysis indicated that the risk signature was an independent prognostic factor for OS (p < 0.05). Moreover, significant differences in the immune response and BRCA1 mutations were identified in different groups distinguished by the risk signature (p < 0.05). Interestingly, in-vitro assays showed that an alternative lncRNA (DICER1-AS1) could promote OC cell proliferation. Conclusion: The PRL risk signature could independently predict overall survival and guide treatment in patients with OC.

5.
J Alzheimers Dis ; 84(2): 895-904, 2021.
Article in English | MEDLINE | ID: mdl-34602486

ABSTRACT

BACKGROUND: Amyloid plaques and neurofibrillary tangles are two pathological hallmarks of Alzheimer's disease (AD). However, synaptic deficits occur much earlier and correlate stronger with cognitive decline than amyloid plaques and neurofibrillary tangles. Mislocalization of tau is an early hallmark of neurodegeneration and precedes aggregations. Sirtuin type 1 (SIRT1) is a deacetylase which acts on proteins including transcriptional factors and associates closely with AD. OBJECTIVE: The present study investigated the association between SIRT1 and tau expression/tau localization in cells and in mice brains. METHODS: Western blot was performed to detected tau, SIRT1, C/EBPα, and GAPDH protein levels. Immunological fluorescence assay was used to assess tau localization in primary cortical neuronal cells. Golgi staining was performed to evaluated dendritic spine morphology in mice brains. RESULTS: In the present study, we found that SIRT1 negatively regulates expression of tau at the transcriptional level through transcriptional factor C/EBPα. Inhibition of the activity of SIRT1 limits the distribution of tau to the neurites. In the meantime, the alteration of dendritic spine morphology is also observed in the brains of SIRT1+/- mice. CONCLUSION: SIRT1 may be a potential drug target for early intervention in AD.


Subject(s)
Sirtuin 1/metabolism , Synaptic Transmission/physiology , Tauopathies/metabolism , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Humans , Mice , Mice, Knockout , Neurofibrillary Tangles , Sirtuin 1/genetics
6.
Med Sci Monit ; 27: e933084, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34471085

ABSTRACT

The abnormal accumulation of amyloid-b (Ab) and neurofibrillary tangles (NFTs) containing phosphorylated tau proteins are the main histopathological feature of Alzheimer's disease (AD). Synaptic damage and loss are earlier events than amyloid plaques and NFTs in AD progress and best correlate with cognitive deficits in AD patients. Soluble oligomeric Aß initiates the progression of AD and tau mediates the subsequent synaptic impairments at an early stage of AD. In this review we discuss how Ab or/and tau causes synaptic dysfunction. Ab oligomers gather at synapses and give rise to synaptic death in a variety of ways such as regulating receptors and receptor tyrosine kinases, unbalancing calcium homeostasis, and activating caspases and calcineurin. A large amount of hyperphosphorylated tau exists in the synapse of the AD brain. Aß-triggered synaptic deficits are dependent on tau. Soluble, hyperphosphorylated tau is much more correlated to cognitive decline in AD patients. Tau-targeted therapies have received more attention because the treatments targeting Aß failed in AD. Here, we also review the therapy strategies used to intervene in the very early stages of AD. Soluble hyperphosphorylated tau forms a complex with cell surface receptors, scaffold proteins, or intracellular signaling molecules to damage synaptic function. Therefore, therapeutic strategies targeting synaptic tau at the early stage of AD may ameliorating pathology in AD. This review aims to provide an update on the role of oligomeric Ab and soluble hyperphosphorylated tau in the early pathogenesis of Alzheimer's disease and to develop a new treatment strategy based on this.


Subject(s)
Alzheimer Disease/etiology , Amyloid beta-Peptides/metabolism , Synapses , tau Proteins/metabolism , Animals , Humans
7.
Front Mol Neurosci ; 14: 671779, 2021.
Article in English | MEDLINE | ID: mdl-34248498

ABSTRACT

Microtubule-associated protein tau forms insoluble neurofibrillary tangles (NFTs), which is one of the major histopathological hallmarks of Alzheimer's disease (AD). Many studies have demonstrated that tau causes early functional deficits prior to the formation of neurofibrillary aggregates. The redistribution of tau from axons to the somatodendritic compartment of neurons and dendritic spines causes synaptic impairment, and then leads to the loss of synaptic contacts that correlates better with cognitive deficits than amyloid-ß (Aß) aggregates do in AD patients. In this review, we discuss the underlying mechanisms by which tau is mislocalized to dendritic spines and contributes to synaptic dysfunction in AD. We also discuss the synergistic effects of tau and oligomeric forms of Aß on promoting synaptic dysfunction in AD.

SELECTION OF CITATIONS
SEARCH DETAIL
...