Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38202405

ABSTRACT

Salinity greatly affects the production of soybeans in arid and semi-arid lands around the world. The responses of soybeans to salt stress at germination, emergence, and other seedling stages have been evaluated in multitudes of studies over the past decades. Considerable salt-tolerant accessions have been identified. The association between salt tolerance responses during early and later growth stages may not be as significant as expected. Genetic analysis has confirmed that salt tolerance is distinctly tied to specific soybean developmental stages. Our understanding of salt tolerance mechanisms in soybeans is increasing due to the identification of key salt tolerance genes. In this review, we focus on the methods of soybean salt tolerance screening, progress in forward genetics, potential mechanisms involved in salt tolerance, and the importance of translating laboratory findings into field experiments via marker-assisted pyramiding or genetic engineering approaches, and ultimately developing salt-tolerant soybean varieties that produce high and stable yields. Progress has been made in the past decades, and new technologies will help mine novel salt tolerance genes and translate the mechanism of salt tolerance into new varieties via effective routes.

2.
Zhongguo Zhong Yao Za Zhi ; 45(22): 5487-5494, 2020 Nov.
Article in Chinese | MEDLINE | ID: mdl-33350210

ABSTRACT

To prepare peptide-modified chitosan tetramethylprazine nanoparticles(FGF-CS-TMP-NPS) and investigate its reversal effect on multidrug resistance in tumor cells. The pEGF-CS-TMP-NPs were prepared by ion crosslinking method, and their physicochemical properties were investigated. Western blot was used to detect the expression levels of epidermal growth factor receptor(EGFR)(MCF-7, MCF-7/ADR, K562 and K562/ADR) and drug-resistant related protein P-gp. MCF-7/ADR and K562/ADR were selected as cell models. The cytotoxicity of pEGF-CS-TMP-NPs, the multiple of cell resistance to adriamycin, the reversal resistance index of pEGF-CS-TMP-NPs to doxorubicin and the sensitization of pEGF-CS-TMP-NPs to doxorubicin were detected by MTT assay. After MCF-7/ADR and K562/ADR were treated with pEGF-CS-TMP-NPs, the expression changes of P-gp were detected by Western blot. The encapsulation efficiency and drug loading of pEGF-CS-TMP-NPs were 37.66%± 0.53% and 3.25%± 0.34% respectively in HPLC. The nanoparticles showed an average particle size of(150.50±9.3) nm, polymer dispersity index of(0.059±0.007) and Zeta potential of(19.30±2.02) mV as detected by laser particle size analyzer. The nanoparticles were spherical and well dispersed under transmission electron microscope. Western blot results showed that EGFR was positively expressed in MCF-7 and MCF-7/ADR cells, while negatively expressed in K562 and K562/ADR cells. P-gp was highly expressed in MCF-7/ADR and K562/ADR, while negatively expressed in MCF-7 and K562. pEGF-CS-TMP-NPs had a weak effect on MCF-7/ADR and K562/ADR. The adriamycin resistance of MCF-7/ADR cells was 108.36 times, and that of K562/ADR cells was more than 100 times. When IC_(85) of pEGF-CS-TMP-NPs was used as the administration concentration, the reversion index of MCF-7/ADR and K562/ADR cells was 3.68 and 1.87, respectively. pEGF-CS-TMP-NPs could enhance the sensitivity of adriamycin to MCF-7/ADR cells in a positive correlation with the concentration, and the sensitivity was significantly higher than that of K562/ADR cells. Western blot results showed that the expression level of P-gp in MCF-7/ADR cells decreased significantly after treatment with pEGF-CS-TMP-NPs, while the expression level of P-gp in K562/ADR cells did not change significantly. Experimental results show that pEGF-CS-TMP-NPs have an active targeting effect on MCF-7/ADR cells with high EGFR expression, and can effectively reverse the multidrug resistance of MCF-7/ADR cells. Active targeting effect is related to the peptides modification of nanoparticles, and the mechanism of reversing tumor MDR may be achieved by down-regulating the expression level of P-gp.


Subject(s)
Breast Neoplasms , Chitosan , Nanoparticles , Doxorubicin , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Peptides , Pyrazines
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-878785

ABSTRACT

To prepare peptide-modified chitosan tetramethylprazine nanoparticles(FGF-CS-TMP-NPS) and investigate its reversal effect on multidrug resistance in tumor cells. The pEGF-CS-TMP-NPs were prepared by ion crosslinking method, and their physicochemical properties were investigated. Western blot was used to detect the expression levels of epidermal growth factor receptor(EGFR)(MCF-7, MCF-7/ADR, K562 and K562/ADR) and drug-resistant related protein P-gp. MCF-7/ADR and K562/ADR were selected as cell models. The cytotoxicity of pEGF-CS-TMP-NPs, the multiple of cell resistance to adriamycin, the reversal resistance index of pEGF-CS-TMP-NPs to doxorubicin and the sensitization of pEGF-CS-TMP-NPs to doxorubicin were detected by MTT assay. After MCF-7/ADR and K562/ADR were treated with pEGF-CS-TMP-NPs, the expression changes of P-gp were detected by Western blot. The encapsulation efficiency and drug loading of pEGF-CS-TMP-NPs were 37.66%± 0.53% and 3.25%± 0.34% respectively in HPLC. The nanoparticles showed an average particle size of(150.50±9.3) nm, polymer dispersity index of(0.059±0.007) and Zeta potential of(19.30±2.02) mV as detected by laser particle size analyzer. The nanoparticles were spherical and well dispersed under transmission electron microscope. Western blot results showed that EGFR was positively expressed in MCF-7 and MCF-7/ADR cells, while negatively expressed in K562 and K562/ADR cells. P-gp was highly expressed in MCF-7/ADR and K562/ADR, while negatively expressed in MCF-7 and K562. pEGF-CS-TMP-NPs had a weak effect on MCF-7/ADR and K562/ADR. The adriamycin resistance of MCF-7/ADR cells was 108.36 times, and that of K562/ADR cells was more than 100 times. When IC_(85) of pEGF-CS-TMP-NPs was used as the administration concentration, the reversion index of MCF-7/ADR and K562/ADR cells was 3.68 and 1.87, respectively. pEGF-CS-TMP-NPs could enhance the sensitivity of adriamycin to MCF-7/ADR cells in a positive correlation with the concentration, and the sensitivity was significantly higher than that of K562/ADR cells. Western blot results showed that the expression level of P-gp in MCF-7/ADR cells decreased significantly after treatment with pEGF-CS-TMP-NPs, while the expression level of P-gp in K562/ADR cells did not change significantly. Experimental results show that pEGF-CS-TMP-NPs have an active targeting effect on MCF-7/ADR cells with high EGFR expression, and can effectively reverse the multidrug resistance of MCF-7/ADR cells. Active targeting effect is related to the peptides modification of nanoparticles, and the mechanism of reversing tumor MDR may be achieved by down-regulating the expression level of P-gp.


Subject(s)
Humans , Breast Neoplasms , Chitosan , Doxorubicin , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Nanoparticles , Peptides , Pyrazines
SELECTION OF CITATIONS
SEARCH DETAIL
...