Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(28): e2320870121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959033

ABSTRACT

Efficient storage and sharing of massive biomedical data would open up their wide accessibility to different institutions and disciplines. However, compressors tailored for natural photos/videos are rapidly limited for biomedical data, while emerging deep learning-based methods demand huge training data and are difficult to generalize. Here, we propose to conduct Biomedical data compRession with Implicit nEural Function (BRIEF) by representing the target data with compact neural networks, which are data specific and thus have no generalization issues. Benefiting from the strong representation capability of implicit neural function, BRIEF achieves 2[Formula: see text]3 orders of magnitude compression on diverse biomedical data at significantly higher fidelity than existing techniques. Besides, BRIEF is of consistent performance across the whole data volume, and supports customized spatially varying fidelity. BRIEF's multifold advantageous features also serve reliable downstream tasks at low bandwidth. Our approach will facilitate low-bandwidth data sharing and promote collaboration and progress in the biomedical field.


Subject(s)
Information Dissemination , Neural Networks, Computer , Humans , Information Dissemination/methods , Data Compression/methods , Deep Learning , Biomedical Research/methods
2.
Front Neuroinform ; 17: 1276891, 2023.
Article in English | MEDLINE | ID: mdl-38187824

ABSTRACT

The main olfactory bulb is the key element of the olfactory pathway of rodents. To precisely dissect the neural pathway in the main olfactory bulb (MOB), it is necessary to construct the three-dimensional morphologies of the anatomical structures within it with micro-level resolution. However, the construction remains challenging due to the complicated shape of the anatomical structures in the main olfactory bulb and the high resolution of micro-optical images. To address these issues, we propose an interactive volume image segmentation method with micro-level resolution in the horizontal and axial direction. Firstly, we obtain the initial location of the anatomical structures by manual annotation and design a patch-based neural network to learn the complex texture feature of the anatomical structures. Then we randomly sample some patches to predict by the trained network and perform an annotation reconstruction based on intensity calculation to get the final location results of the anatomical structures. Our experiments were conducted using Nissl-stained brain images acquired by the Micro-optical sectioning tomography (MOST) system. Our method achieved a mean dice similarity coefficient (DSC) of 81.8% and obtain the best segmentation performance. At the same time, the experiment shows the three-dimensional morphology reconstruction results of the anatomical structures in the main olfactory bulb are smooth and consistent with their natural shapes, which addresses the possibility of constructing three-dimensional morphologies of the anatomical structures in the whole brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...