Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chemistry ; 26(19): 4333-4340, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31943405

ABSTRACT

With the assistance of hydrogen bonds of the o-amino group, we have successfully tuned a coordination structure from a metal-organic polyhedron (MOP) to a two-dimensional (2D) metal-organic framework (MOF). The amino group forms hydrogen bonds with the two vicinal carboxylic groups, and induces the ligand to coordinate with copper ions to form the 2D structure. The obtained 2D Cu-based MOF (Cu-AIA) has been applied as an efficient heterogeneous catalyst in the aerobic epoxidation of olefins by using air as oxygen source. Without the aggregation problem of active sites in MOPs, Cu-AIA possesses much higher reactivity than MOP-1. Furthermore, the amino group of the framework has been used as a modifiable site through post-synthetic metalation (PSMet) to prepare a 2D MOF-supported Pd single-site heterogeneous catalyst, which shows excellent catalytic performance for the Suzuki reaction. It indicates that Cu-AIA can also work as a good 2D MOF carrier for the derivation of other heterogeneous catalysts.

2.
Chemistry ; 24(23): 6133-6139, 2018 Apr 20.
Article in English | MEDLINE | ID: mdl-29457970

ABSTRACT

Shape-controlled synthesis of colloidal metal nanocrystals has traditionally relied on the use of an approach that involves the reduction of a metal precursor by a single reductant. Once the concentration of atoms surpasses supersaturation, they will undergo homogeneous nucleation to generate nuclei and then seeds, followed by further growth into nanocrystals. In general, it is a grand challenge to optimize such an approach because the kinetic requirement for nucleation tends to be drastically different from what is needed to guide the growth process. In this work, we overcome this difficulty by switching to a dual-reductant approach, in which both strong and weak reductants are added into the same reaction solution. By controlling their amounts to program the reduction kinetics, the strong reductant only regulates the homogeneous nucleation process to generate the desired seeds, and once consumed, the weak reductant takes over to control the growth pattern and thereby the shape of the resulting nanocrystals.

3.
Nano Lett ; 17(1): 334-340, 2017 01 11.
Article in English | MEDLINE | ID: mdl-27960060

ABSTRACT

Despite the pivotal role played by the reduction of a salt precursor in the synthesis of metal nanocrystals, it is still unclear how the precursor is reduced. The precursor can be reduced to an atom in the solution phase, followed by its deposition onto the surface of a growing nanocrystal. Alternatively, the precursor can adsorb onto the surface of a growing nanocrystal, followed by reduction through an autocatalytic process. With Pd as an example, here we demonstrate that the pathway has a correlation with the reduction kinetics involved. Our quantitative analyses of the reduction kinetics of PdCl42- and PdBr42- by ascorbic acid at room temperature in the absence and presence of Pd nanocubes, respectively, suggest that PdCl42- was reduced in the solution phase while PdBr42- was reduced on the surface of a growing nanocrystal. Our results also demonstrate that the reduction pathway of PdBr42- by ascorbic acid could be switched from surface to solution by raising the reaction temperature.

4.
Chem Commun (Camb) ; 52(85): 12594-12597, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27711370

ABSTRACT

This paper reports the use of formic acid as a reducing agent for the shape-controlled synthesis of Pd nanocrystals with no chemisorption of CO on the surface, as confirmed by attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy.

5.
Nano Lett ; 16(10): 6644-6649, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27661446

ABSTRACT

Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt19Ag81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt56Ag44, together with a specific activity of 1.23 mA cm-2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm-2) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg-1Pt, which was still about two times that of the pristine Pt/C catalyst (0.19 A mg-1Pt).

6.
J Am Chem Soc ; 138(37): 12263-70, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27568848

ABSTRACT

We report a quantitative understanding of the reduction kinetics responsible for the formation of Pd-Pt bimetallic nanocrystals with two distinctive structures. The syntheses involve the use of KBr to manipulate the reaction kinetics by influencing the redox potentials of metal precursor ions via ligand exchange. In the absence of KBr, the ratio between the initial reduction rates of PdCl4(2-) and PtCl4(2-) was about 10.0, leading to the formation of Pd@Pt octahedra with a core-shell structure. In the presence of 63 mM KBr, the products became Pd-Pt alloy nanocrystals. In this case, the ratio between the initial reduction rates of the two precursors dropped to 2.4 because of ligand exchange and, thus, the formation of PdBr4(2-) and PtBr4(2-). The alloy nanocrystals took a cubic shape owing to the selective capping effect of Br(-) ions toward the {100} facets. Relative to the alloy nanocubes, the Pd@Pt core-shell octahedra showed substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). Specifically, the specific (1.51 mA cm(-2)) and mass (1.05 A mg(-1) Pt) activities of the core-shell octahedra were enhanced by about four- and three-fold relative to the alloy nanocubes (0.39 mA cm(-2) and 0.34 A mg(-1) Pt, respectively). Even after 20000 cycles of accelerated durability test, the core-shell octahedra still exhibited a mass activity of 0.68 A mg(-1) Pt, twice that of a pristine commercial Pt/C catalyst.

7.
ChemSusChem ; 9(16): 2209-15, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27460459

ABSTRACT

We describe a new strategy to enhance the catalytic durability of Pt-Ni octahedral nanocrystals in the oxygen reduction reaction (ORR) by conformally depositing an ultrathin Pt shell on the surface. The Pt-Ni octahedra were synthesized according to a protocol reported previously and then employed directly as seeds for the conformal deposition of ultrathin Pt shells by introducing a Pt precursor dropwise at 200 °C. The amount of Pt precursor was adjusted relative to the number of Pt-Ni octahedra involved to obtain Pt-Ni@Pt1.5L octahedra of 12 nm in edge length for the systematic evaluation of their chemical stability and catalytic durability compared to Pt-Ni octahedra. Specifically, we compared the elemental compositions of the octahedra before and after treatment with acetic and sulfuric acids. We also examined their electrocatalytic stability toward the ORR through an accelerated durability test by using a rotating disk electrode method. Even after treatment with sulfuric acid for 24 h, the Pt-Ni@Pt1.5L octahedra maintained their original Ni content, whereas 11 % of the Ni was lost from the Pt-Ni octahedra. After 10 000 cycles of ORR, the mass activity of the Pt-Ni octahedra decreased by 75 %, whereas the Pt-Ni@Pt1.5L octahedra only showed a 25 % reduction.


Subject(s)
Nickel/chemistry , Oxygen/chemistry , Platinum/chemistry , Catalysis , Metal Nanoparticles/chemistry , Oxidation-Reduction
8.
J Am Chem Soc ; 137(47): 15036-42, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26566188

ABSTRACT

We report a facile synthesis of multiply twinned Pd@Pt core-shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 °C, naturally generating a core-shell structure covered by concave facets. The nonuniformity in the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm(2)Pt) and mass (1.60 A/mgPt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm(2)Pt and 0.32 A/mgPt, respectively). After 10,000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mgPt, more than twice that of the pristine Pt/C catalyst.

9.
Chemistry ; 20(18): 5244-52, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24677426

ABSTRACT

Surface functionalization of inorganic nanomaterials through chemical binding of organic ligands on the surface unsaturated atoms, forming unique organic-inorganic interfaces, is a powerful approach for creating special functions for inorganic nanomaterials. Herein, we report the synthesis of hierarchical MgO nanocrystal clusters (NCs) with an organic-inorganic interface induced multi-fluorescence and their application as new alternative labels for cellular imaging. The synthetic method was established by a dissolution and regrowth process with the assistance of carboxylic acid, in which the as-prepared MgO NCs were modified with carboxylic groups at the coordinatively unsaturated atoms of the surface. By introducing acetic acid to partially replace oleic acid in the reaction, the optical absorption of the produced MgO NCs was progressively engineered from the UV to the visible region. Importantly, with wider and continuous absorption profile, those MgO NCs presented bright and tunable multicolor emissions from blue-violet to green and yellow, with the highest absolute quantum yield up to (33±1) %. The overlap for the energy levels of the inorganic-organic interface and low-coordinated states stimulated a unique fluorescence resonance energy transfer phenomenon. Considering the potential application in cellular imaging, such multi-fluorescent MgO NCs were further encapsulated with a silica shell to improve the water solubility and stability. As expected, the as-formed MgO@SiO2 NCs possessed great biocompatibility and high performance in cellular imaging.


Subject(s)
Fluorescent Dyes/chemistry , Manganese Compounds/chemistry , Nanoparticles/chemistry , Oxides/chemistry , Carboxylic Acids/chemistry , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Nanoparticles/ultrastructure , Optical Imaging , Silicon Dioxide/chemistry , Solubility , Surface Properties
10.
Nanoscale ; 4(20): 6256-9, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-22955723

ABSTRACT

Through the different functionalities on Au nanosphere (AuNSs) and Au nanorod (AuNRs) surfaces, we successfully control AuNSs attachment onto either the end or side surface of anisotropic AuNRs via bio-recognition, and then consciously construct side-by-side or end-to-end assembly nanostructures. This study provides a feasible approach to organize nanoparticles with different morphologies into controllable assembly geometries, which can potentially benefit the construction of future nanodevices.


Subject(s)
Biotin/chemistry , Gold/chemistry , Nanospheres/ultrastructure , Nanotubes/ultrastructure , Streptavidin/chemistry , Microscopy, Electron, Transmission , Nanospheres/chemistry , Nanotechnology , Nanotubes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...