Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 137: 112498, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38908079

ABSTRACT

The neuroinflammatory response triggered by cerebral ischemia-reperfusion injury (CIRI) is characterized by the upsurge of pro-inflammatory cytokines, including TNF-α, IL-1ß, and IL-6, which promote leukocyte infiltration and subsequent accumulation in the ischemic zone. This accumulation further intensifies inflammation and aggravates ischemic damage. Certolizumab pegol (CZP), a monoclonal antibody targeting TNF-α, is widely used in treating various inflammatory diseases. This study explored the therapeutic potential of CZP in a mouse model of CIRI, induced by middle cerebral artery occlusion (MCAO), focusing on its influence on the microglial inflammatory response. In vitro analyses revealed that CZP markedly inhibits TNF-α-stimulated inflammation in primary microglia with an EC50 of 1.743 ng/mL. In vivo, MCAO mice treated with CZP (10 µg/mouse, i.p.) for 3 days showed reduced infarct volume, partially improved neurological function, and diminished blood-brain barrierdisruption. Additionally, CZP treatment curtailed microglial activation and the release of pro-inflammatory mediators in the early stages of stroke. It also favorably modulated microglial M1/M2 polarization, rebalanced Th17/Treg cells dynamics, and inhibited Caspase-8-mediated GSDMD cleavage, preventing microglial pyroptosis. Collectively, this study described that the treatment with CZP reversed damaging process caused by CIRI, offering a promising therapeutic strategy for the treatment of ischemic stroke.


Subject(s)
Certolizumab Pegol , Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , Microglia , Reperfusion Injury , Tumor Necrosis Factor-alpha , Animals , Reperfusion Injury/drug therapy , Certolizumab Pegol/therapeutic use , Certolizumab Pegol/pharmacology , Male , Mice , Microglia/drug effects , Tumor Necrosis Factor-alpha/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Disease Models, Animal , Brain Ischemia/drug therapy , Cells, Cultured , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Humans , Brain/drug effects , Brain/pathology , Brain/metabolism , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...