Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950345

ABSTRACT

A vibrational electronic-thermofield coupled cluster (VE-TFCC) approach is developed to calculate thermal properties of non-adiabatic vibronic coupling systems. The thermofield (TF) theory and a mixed linear exponential ansatz based on second-quantized Bosonic construction operators are introduced to propagate the thermal density operator as a "pure state" in the Bogoliubov representation. Through this compact representation of the thermal density operator, the approach is basis-set-free and scales classically (polynomial) as the number of degrees of freedoms (DoF) in the system increases. The VE-TFCC approach is benchmarked with small test models and a real molecular compound (CoF4- anion) against the conventional sum over states (SOS) method and applied to calculate thermochemistry properties of a gas-phase reaction: CoF3 + F- → CoF4-. Results shows that the VE-TFCC approach, in conjunction with vibronic models, provides an effective protocol for calculating thermodynamic properties of vibronic coupling systems.

2.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38426527

ABSTRACT

A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born-Oppenheimer approximation. A detailed derivation of the equations of motion and a motivation for the ansatz are presented. The VECC method employs second-quantized bosonic construction operators and a mixed linear and exponential ansatz to form a compact representation of the time-dependent wave-function. Importantly, the method does not require a basis set, has only a few user-defined inputs, and has a classical (polynomial) scaling with respect to the number of degrees of freedom (of the vibronic model), resulting in a favorable computational cost. In benchmark applications to small models and molecules, the VECC method provides accurate results compared to multi-configurational time-dependent Hartree calculations when predicting short-time dynamical properties (i.e., photo-electron/UV-VIS absorption spectra) for non-adiabatic vibronic models. To illustrate the capabilities, the VECC method is also successfully applied to a large vibronic model for hexahelicene with 14 electronic states and 63 normal modes, developed in the group by Aranda and Santoro [J. Chem. Theory Comput. 17, 1691, (2021)].

3.
Transbound Emerg Dis ; 69(5): 2747-2763, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34936210

ABSTRACT

Peste des petits ruminants (PPR) is a highly infectious disease that mainly infects small ruminants. To date, PPR has been confirmed in more than 70 countries. In China, PPR has occurred in more than 20 provinces and cities. In this study, based on geographic information system (GIS), spatial analysis was used to examine the occurrence of PPR in China from 2007 to 2018. The results showed that PPR first occurred in Tibet and gradually spread to other provinces. The outbreaks of PPR were concentrated in 2014, 2015 and 2018. Combining climate factors with the maximum entropy (MaxEnt), the results also suggested that the potential risk areas of PPR outbreaks in China were mainly Jiangsu, Yunnan and Anhui in Southeast China. Finally, a phylogenetic tree was used to analyse the evolutionary relationship between the peste des petits ruminants virus (PPRV) in China and the global ones, and it was found that the one in China had a close genetic relationship with the one in Mongolia, India and Bangladesh. Understanding and forecasting the distribution of PPR in China will help policymakers develop targeted monitoring plans. Likewise, analysing the global PPRV epidemic trends will play an important role in the elimination and prevention of PPR.


Subject(s)
Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , China/epidemiology , Disease Outbreaks , Goat Diseases/epidemiology , Goats , Peste-des-petits-ruminants virus/genetics , Phylogeny , Ruminants
SELECTION OF CITATIONS
SEARCH DETAIL
...