Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 348: 119356, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37883835

ABSTRACT

Resource utilization of solid waste can aid in gradual substitution of fossil fuels while achieving waste recycling. In this study, residual carbon and ash slag from the coal gasification fine slag were separated by froth flotation, and then was used to prepare Ru/C and ZSM-5 dual catalysts with carbon-rich and ash-rich components as raw materials, respectively. The performance of two catalysts for catalytic upgrading of volatiles from pyrolysis of cow manure (CM) to produce light aromatic hydrocarbons was systematically investigated. The direct pyrolysis products of CM mainly included alcohols, ketones, ethers, and other oxygen-containing compounds. When ZSM-5 was used as the catalyst, the yield of monocyclic aromatic hydrocarbons (MAHs) increased significantly due to the better catalytic cracking and aromatization abilities of ZSM-5 catalyst. However, the yield of phenols in the pyrolysis products improved when Ru/C was used as the catalyst due to the cleavage effect of Ru/C on the C-O bond. When Ru/C and ZSM-5 were used as dual catalysts in relay catalytic pyrolysis of volatiles, the increase in MAHs yield in the pyrolysis product was higher than the total increase obtained under Ru/C and ZSM-5 single catalysis. The possible pathways for the generation of MAHs from CM under Ru/C and ZSM-5 relay catalytic pyrolysis were revealed by the pyrolysis experiment performed on model compounds.


Subject(s)
Hydrocarbons, Aromatic , Manure , Cattle , Animals , Pyrolysis , Coal , Catalysis , Carbon
2.
ACS Omega ; 8(35): 31620-31631, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692248

ABSTRACT

Syngas from biomass gasification can be used in downstream process industries such as city gas, hydrogen production, etc. In this review, the effects of biomass feedstock properties, and gasification reaction conditions (temperature, gasifier type, etc.) on syngas properties are systematically reviewed. In summary, the cracking and reforming of volatile fractions in the gasification process and the catalytic effect of alkali and alkaline earth metals in the ash on the gasification have a direct impact on the syngas yield. And biomass pretreatment (i.e., terrifying/hydrothermal carbonization) can reduce the moisture content, which can effectively reduce the energy required for gasification and enhance the calorific value and syngas yield further. The fixed-bed gasifiers produce lower amounts of syngas. The concentration of H2 is significantly increased by adding steam as a gasification agent. Additionally higher gasification temperatures produce more syngas, and an equivalence ratio of about 0.2-0.3 is considered suitable for gasification. For the influence of feedstock on syngas, this paper not only reviews the feedstock properties (volatile, ash, moisture) but also compares the influence of two pretreatments on syngas yield and proposes that the combination of torrefaction/hydrothermal carbonization and a multistage air bed gasifier is an important research direction to improve the combustible components of syngas. In addition to the summary of commonly used single gasification agents, two or more gasification agents on the concentration of syngas components are also discussed in the gasification parameters, and it is suggested that further research into the use of more than one gasification agent is also important for future syngas production.

SELECTION OF CITATIONS
SEARCH DETAIL
...