Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Toxicology ; 509: 153953, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39265697

ABSTRACT

Graphene oxide (GO) is a type of nanomaterial widely used in tissue engineering, photocatalysis, and biomedicine. GO has been found to produce adverse effects on a broad range of cells and tissues. However, the molecular mechanisms underlying GO toxicity still remain to be explored. In this study, using porcine alveolar macrophages as a study model, we explored the toxic effects of GO and performed genome-wide detection of genes and metabolites associated with GO exposure using RNA-seq and liquid chromatograph mass spectrometer techniques. GO exposure significantly inhibited cell viability and induced apoptosis and oxidative stress in porcine alveolar macrophages. Further, GO exposure promoted cellular inflammation by upregulating the expression of pro-inflammatory cytokines (IL-6, IL-8, and IL-12). Transcriptomic analysis of GO-exposed cells revealed 424 differentially expressed genes. Functional enrichment analysis showed that the differentially expressed genes were significantly enriched in the pathways of Ribosome and oxidative phosphorylation (OXPHOS). In addition, metabolic analysis identified 203 differential metabolites, and these metabolites were significantly enriched in biosynthesis of cofactors, purine metabolism, and nucleotide metabolism. Integrative analyses of transcriptome and metabolome showed that OXPHOS was the most significantly enriched pathway and the involved genes were downregulated. This study revealed the toxic effects of GO on porcine alveolar macrophages and provided global insights to the metabolomic and transcriptomic alterations related to GO exposure. The results contributed to our understanding of the molecular mechanism of GO, and may further promote the detection of biomarkers for the prediction and control of GO toxicity.

2.
Luminescence ; 39(8): e4858, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39129443

ABSTRACT

The research outlined a novel approach for creating a sensitive and efficient ratio fluorescent probe for ciprofloxacin (CIP) detection. The method used the biomass materials passionfruit shell and diethylenetriamine as carbon and nitrogen sources, respectively, to prepare blue fluorescent carbon quantum dots (b-CQDs) with an average size of 3.29 nm and a quantum yield of 19.6% by a hydrothermal method. The newly designed b-CQDs/riboflavin ratio fluorescent probe demonstrates a distinct advantage for CIP monitoring, exhibiting a marked increase in fluorescence intensity at 445 nm upon interaction with CIP, while maintaining a stable intensity at 510 nm. In the water system, the I445 nm/I510 nm ratio of the fluorescent probe showed a significant linear relationship with CIP at the concentrations of 0-250 µmol·L-1, and the probe boasts a low detection limit of 0.86 µmol·L-1. The outstanding selectivity, broad detection range, low detection limits, and high quantum yield of the b-CQDs highlight their significant potential in the development of advanced sensing probes for efficient detection of ciprofloxacin, offering promising insights for future sensor technology advancements.


Subject(s)
Carbon , Ciprofloxacin , Fluorescent Dyes , Quantum Dots , Quantum Dots/chemistry , Ciprofloxacin/analysis , Ciprofloxacin/chemistry , Ciprofloxacin/blood , Fluorescent Dyes/chemistry , Carbon/chemistry , Spectrometry, Fluorescence , Limit of Detection
3.
Toxicology ; 506: 153880, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960307

ABSTRACT

Deoxynivalenol (DON) is widely found in food and feed, posing a threat to human and animal health. Lycopene (Lyc) is a natural plant extracts with significant antioxidant properties. This study was conducted to investigate the protective effects of Lyc on IPEC-J2 cells upon DON exposure. The detection of cell viability and trypan blue staining showed that Lyc alleviated cell damage and decreased cell apoptotic rate induced by DON. The analysis of reactive oxygen species (ROS) level and antioxidant parameter measurements showed that Lyc significantly down-regulated the content of ROS and restored antioxidant enzyme activity. Furthermore, mitochondrial membrane potential (ΔΨm) detection, mitochondrial DNA copy number (mtDNAcn) assay and adenosine triphosphate (ATP) concentration detection showed Lyc improved mitochondrial function after DON exposure. The results of transcriptome analysis, ROS detection and CCK8 assay suggested that Lyc may activated the oxidative phosphorylation (OXPHOS) to improve mitochondrial function. Conclusively, our results suggested that Lyc alleviated DON-induced oxidative stress by improving mitochondrial function through OXPHOS signaling pathway.


Subject(s)
Cell Survival , Epithelial Cells , Lycopene , Membrane Potential, Mitochondrial , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Trichothecenes , Animals , Trichothecenes/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Lycopene/pharmacology , Swine , Reactive Oxygen Species/metabolism , Cell Line , Membrane Potential, Mitochondrial/drug effects , Cell Survival/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , Antioxidants/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
4.
Vet Res ; 55(1): 91, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039559

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) causes diarrhea in piglets, thereby causing very significant economic losses for the global swine industry. In previous studies, it has been confirmed that microRNAs (miRNAs) play an important role in the infection caused by PEDV. However, the precise molecular mechanism of miRNAs in the regulation of PEDV infection is still not fully understood. In the present study, we utilized miRNA-seq analysis to identify ssc-miR-1343 with differential expression between PEDV-infected and normal piglets. The expression of ssc-miR-1343 was detected in isolated exosomes, and it was found to be significantly higher than that in the controls following PEDV infection. The ssc-miR-1343 mimic was found to decrease PEDV replication, whereas the ssc-miR-1343 inhibitor was observed to increase PEDV replication, and ssc-miR-1343 was delivered by exosomes during PEDV infection. Mechanistically, ssc-miR-1343 binds to the 3'UTR region of FAM131C, down-regulating its expression, and FAM131C has been shown to enhance PEDV replication through simultaneously suppressing pathways associated with innate immunity. The ssc-miR-1343/FAM131C axis was found to upregulate the host immune response against PEDV infection. In conclusion, our findings indicate that the transport of ssc-miR-1343 in exosomes is involved in PEDV infection. This discovery presents a new potential target for the development of drugs to treat PEDV.


Subject(s)
Coronavirus Infections , Exosomes , MicroRNAs , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/physiology , Porcine epidemic diarrhea virus/genetics , Swine , MicroRNAs/metabolism , MicroRNAs/genetics , Swine Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Exosomes/metabolism , Virus Replication
5.
Front Vet Sci ; 11: 1359547, 2024.
Article in English | MEDLINE | ID: mdl-38855411

ABSTRACT

Introduction: Porcine deltacoronavirus (PDCoV), an emerging swine enteropathogenic coronavirus with worldwide distribution, mainly infects newborn piglets with severe diarrhea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. However, the underlying pathogenic mechanisms of PDCoV infection and the effects of PDCoV infection on host transcripts and metabolites remain incompletely understood. Methods: This study investigated a combined transcriptomic and metabolomic analysis of porcine intestinal epithelial cells (IPEC-J2) following PDCoV infection by LC/MS and RNA-seq techniques. A total of 1,401 differentially expressed genes and 254 differentially accumulated metabolites were detected in the comparison group of PDCoV-infected vs. mock-infected. Results and discussion: We found that PDCoV infection regulates gene sets associated with multiple signaling pathways, including the neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, MAPK signaling pathway, chemokine signaling pathway, ras signaling pathway and so on. Besides, the metabolomic results showed that biosynthesis of cofactors, nucleotide metabolism, protein digestion and absorption, and biosynthesis of amino acid were involved in PDCoV infection. Moreover, integrated transcriptomics and metabolomics analyses revealed the involvement of ferroptosis in PDCoV infection, and exogenous addition of the ferroptosis activator erastin significantly inhibited PDCoV replication. Overall, these unique transcriptional and metabolic reprogramming features may provide a better understanding of PDCoV-infected IPEC-J2 cells and potential targets for antiviral treatment.

6.
Vet Sci ; 11(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535869

ABSTRACT

Porcine circovirus type 2 (PCV2) is the main pathogen causing post-weaning multisystemic wasting syndrome (PMWS), which mainly targets the body's immune system and poses a serious threat to the global pig industry. 5-Azacytidine is a potent inhibitor of DNA methylation, which can participate in many important physiological and pathological processes, including virus-related processes, by inhibiting gene expression. However, the impact of 5-Aza on PCV2 replication in cells is not yet clear. We explored the impact of 5-Aza on PCV2 infection utilizing PK15 cells as a cellular model. Our objective was to gain insights that could potentially offer novel therapeutic strategies for PCV2. Our results showed that 5-Aza significantly enhanced the infectivity of PCV2 in PK15 cells. Transcriptome analysis revealed that PCV2 infection activated various immune-related signaling pathways. 5-Aza may activate the MAPK signaling pathway to exacerbate PCV2 infection and upregulate the expression of inflammatory and apoptotic factors.

7.
BMC Genomics ; 25(1): 239, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438836

ABSTRACT

BACKGROUND: Acute diarrhea, dehydration and death in piglets are all symptoms of transmissible gastroenteritis virus (TGEV), which results in significant financial losses in the pig industry. It is important to understand the pathogenesis and identify new antiviral targets by revealing the metabolic interactions between TGEV and host cells. RESULTS: We performed metabolomic and transcriptomic analyses of swine testicular cells infected with TGEV. A total of 1339 differential metabolites and 206 differentially expressed genes were detected post TEGV infection. The differentially expressed genes were significantly enriched in the HIF-1 signaling pathway and PI3K-Akt signaling. Integrated analysis of differentially expressed genes and differential metabolites indicated that they were significantly enriched in the metabolic processes such as nucleotide metabolism, biosynthesis of cofactors and purine metabolism. In addition, the results showed that most of the detected metabolites involved in the bile secretion was downregulated during TGEV infection. Furthermore, exogenous addition of key metabolite deoxycholic acid (DCA) significantly enhanced TGEV replication by NF-κB and STAT3 signal pathways. CONCLUSIONS: We identified a significant metabolite, DCA, related to TGEV replication. It added TGEV replication in host cells by inhibiting phosphorylation of NF-κB and STAT3. This study provided novel insights into the metabolomic and transcriptomic alterations related to TGEV infection and revealed potential molecular and metabolic targets for the regulation of TGEV infection.


Subject(s)
NF-kappa B , Transmissible gastroenteritis virus , Animals , Swine , Phosphorylation , Phosphatidylinositol 3-Kinases , Gene Expression Profiling , Transcriptome , Deoxycholic Acid/pharmacology
8.
J Biol Chem ; 300(3): 105779, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395305

ABSTRACT

The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Proteasome Endopeptidase Complex , Swine Diseases , Viral Nonstructural Proteins , Animals , Acetylation , Alphacoronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Swine , Ubiquitins/metabolism , Swine Diseases/metabolism , Swine Diseases/virology , HEK293 Cells , Vero Cells , Humans , Chlorocebus aethiops , Viral Nonstructural Proteins/metabolism
9.
Life (Basel) ; 14(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255715

ABSTRACT

Erhualian pigs exhibit one of the highest reproductive rates globally, and cryptorchidism is a crucial factor affecting reproductive abilities of boars. This investigation focused on cryptorchid tissues from Erhualian pigs, where the histological structure of cryptorchidism was observed using specialized staining. In addition, protein expression of P53/NF-κB in cryptorchid tissues was assessed using Western blot and immunohistochemistry. In comparison to normal Erhualian testes, Masson's trichrome staining indicated a reduction in collagen fibers in the connective tissue and around the basal membrane of the seminiferous tubules in cryptorchid testes. Moreover, collagen fiber distribution was observed to be disordered. Verhoeff Van Gieson (EVG) and argyrophilic staining demonstrated brownish-black granular nucleoli organized regions in mesenchymal cells and germ cells. When compared to normal testicles, the convoluted seminiferous tubules of cryptorchids exhibited a significantly reduced number and diameter (p < 0.01). Notably, VEGF/EGFR and P53/NF-κB expression in cryptorchidism significantly differed from that in normal testes. In particular, the expression of VEGF and P53 in cryptorchid tissues was significantly higher than that in normal testes tissues, whereas the expression of EGFR in cryptorchid tissues was significantly lower than that in normal testes tissues (all p < 0.01). NF-κB expressed no difference in both conditions. The expressions of VEGF and NF-κB were observed in the cytoplasm of testicular Leydig cells and spermatogenic cells, but they were weak in the nucleus. EGFR and P53 were more positively expressed in the cytoplasm of these cells, with no positive expression in the nucleus. Conclusion: There were changes in the tissue morphology and structure of the cryptorchid testis, coupled with abnormally high expression of VEGF and P53 proteins in Erhualian pigs. We speculate that this may be an important limiting factor to fecundity during cryptorchidism.

10.
Biotechnol J ; 19(1): e2300389, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38047496

ABSTRACT

Antiviral vaccines for pig diseases are essential to prevent epidemic outbreaks. However, their production is often hindered by inefficient manufacturing processes that yield lower quantities of the vaccine. To accelerate the progress of various areas of bioproduction, we have considered the necessity of enhancing viral replication efficiency by optimizing ST (swine testicular) cell lines that are commonly utilized in virus manufacturing. CRISPR/Cas9 gene-editing technology were utilized to create IRF3 or IRF7 knockout cell lines that facilitate high-titer viral stock production. Compared to the parental cell lines, the ST IRF3/7 KO cell line displayed a compromised antiviral response to a panel of viruses (Porcine epidemic diarrhea virus, Senecavirus A, Parainfluenza virus 5, and Getah virus), as evidenced by decreased expression of interferon and certain antiviral factors. The inhibition of these responses led to heightened viral replication and increased cytopathic effects, ultimately promoting apoptosis. As a result, the development of these cell lines offers a more efficient approach for biopharmaceutical companies to boost their virus production and reduce associated costs.


Subject(s)
CRISPR-Cas Systems , Virus Replication , Animals , Swine , CRISPR-Cas Systems/genetics , Cell Line , Virus Replication/genetics , Gene Editing , Antiviral Agents/pharmacology
11.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069055

ABSTRACT

The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing annually, and emerging evidence suggests that the gut microbiota plays a causative role in the development of NAFLD. However, the role of gut microbiota in the development of NAFLD remains unclear and warrants further investigation. Thus, C57BL/6J mice were fed a high-fat diet (HFD), and we found that the HFD significantly induced obesity and increased the accumulation of intrahepatic lipids, along with alterations in serum biochemical parameters. Moreover, it was observed that the HFD also impaired gut barrier integrity. It was revealed via 16S rRNA gene sequencing that the HFD increased gut microbial diversity, which enriched Colidextribacter, Lachnospiraceae-NK4A136-group, Acetatifactor, and Erysipelatoclostridium. Meanwhile, it reduced the abundance of Faecalibaculum, Muribaculaceae, and Coriobacteriaceae-UCG-002. The predicted metabolic pathways suggest that HFD enhances the chemotaxis and functional activity of gut microbiota pathways associated with flagellar assembly, while also increasing the risk of intestinal pathogen colonization and inflammation. And the phosphotransferase system, streptomycin biosynthesis, and starch/sucrose metabolism exhibited decreases. These findings reveal the composition and predictive functions of the intestinal microbiome in NAFLD, further corroborating the association between gut microbiota and NAFLD while providing novel insights into its potential application in gut microbiome research for NAFLD patients.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Humans , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Mice, Inbred C57BL
12.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38116760

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is a coronavirus that infects piglets with severe diarrhoea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. The underlying pathogenesis of TGEV infection and the effects of TGEV infection on host metabolites remain poorly understood. To investigate the critical metabolites and regulatory factors during TGEV infection in intestinal porcine epithelial cells (IPEC-J2), we performed metabolomic and transcriptomic analyses of TGEV-infected IPEC-J2 cells by LC/MS and RNA-seq techniques. A total of 87 differential metabolites and 489 differentially expressed genes were detected. A series of metabolites and candidate genes from glutathione metabolism and AMPK signalling pathway were examined through combined analysis of metabolome and transcriptome. We found glutathione peroxidase 3 (GPX3) is markedly reduced after TGEV infection, and a significant negative correlation between AMPK signalling pathway and TGEV infection. Exogenous addition of the AMPK activator COH-SR4 significantly downregulates stearoyl coenzyme A (SCD1) mRNA and inhibits TGEV replication; while exogenous GSK-690693 significantly promotes TGEV infection by inhibiting AMPK signalling pathway. In summary, our study provides insights into the key metabolites and regulators for TGEV infection from the metabolome and transcriptome perspective, which will offer promising antiviral metabolic and molecular targets and enrich the understanding of the existence of a similar mechanism in the host.


Subject(s)
Gastroenteritis, Transmissible, of Swine , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/genetics , AMP-Activated Protein Kinases , Cell Line , Epithelial Cells , Gene Expression Profiling , Gastroenteritis, Transmissible, of Swine/genetics
13.
Comput Struct Biotechnol J ; 21: 4580-4588, 2023.
Article in English | MEDLINE | ID: mdl-37790243

ABSTRACT

Like other mammalian species, the pig genome is abundant with transposable elements (TEs). The importance of TEs for three-dimensional (3D) chromatin organization has been observed in species like human and mouse, yet current understanding about pig TEs is absent. Here, we investigated the contribution of TEs for the 3D chromatin organization in three pig tissues, focusing on spleen which is crucial for both adaptive and innate immunity. We identified dozens of TE families overrepresented with CTCF binding sites, including LTR22_SS, LTR15_SS and LTR16_SSc which are pig-specific families of endogenous retroviruses (ERVs). Interestingly, LTR22_SS elements harbor a CTCF motif and create hundreds of CTCF binding sites that are associated with adaptive immunity. We further applied Hi-C to profile the 3D chromatin structure in spleen and found that TE-derived CTCF binding sites correlate with chromatin insulation and frequently overlap TAD borders and loop anchors. Notably, one LTR22_SS-derived CTCF binding site demarcate a TAD boundary upstream of XCL1, which is a spleen-enriched chemokine gene important for lymphocyte trafficking and inflammation. Overall, this study represents a first step toward understanding the function of TEs on 3D chromatin organization regulation in pigs and expands our understanding about the functional importance of TEs in mammals.

14.
Int J Biol Macromol ; 253(Pt 2): 126647, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37678681

ABSTRACT

T-2 toxin (T-2) with a molecular weight of 466.52 g/mol is an inevitable mycotoxin in food products and feeds, posing a significant threat to human and animal health. However, the underlying molecular mechanisms of the cytotoxic effects of T-2 exposure on porcine intestinal epithelial cells (IPEC-J2) remain unclear. Here, we investigated the cytotoxic effects of T-2 exposure on IPEC-J2 through the detection of cell viability, cell morphology, mitochondrial membrane potential, ROS, apoptosis and autophagy. Further transcriptomic and proteomic analyses of IPEC-J2 upon T-2 exposure were performed by using RNA-seq and TMT techniques. A total of 546 differential expressed genes (DEGs) and 269 differentially expressed proteins (DEPs) were detected. Among these, 24 common DEGs/DEPs were involved in IPEC-J2 upon T-2 exposure. Interestingly, molecular docking analysis revealed potential interactions between T-2 and three key enzymes (PHGDP, PSAT1, and PSPH) in the serine biosynthesis pathway. Besides, further experimental showed that PSAT1 knockdown exacerbated T-2-induced oxidative damage. Together, our findings indicated that the serine biosynthesis pathway including PHGDP, PSAT1, PSPH genes probably acts critical roles in the regulation of T-2-induced cell damage. This study provided new insights into the global molecular effects of T-2 exposure and identified the serine biosynthesis pathway as molecular targets and potential treatment strategies against T-2.


Subject(s)
T-2 Toxin , Humans , Animals , Swine , Molecular Docking Simulation , T-2 Toxin/toxicity , T-2 Toxin/metabolism , Multiomics , Proteomics , Cell Line , Epithelial Cells , Apoptosis
15.
J Med Virol ; 95(9): e29104, 2023 09.
Article in English | MEDLINE | ID: mdl-37721411

ABSTRACT

Swine acute diarrhea syndrome (SADS) is first reported in January 2017 in Southern China. It subsequently causes widespread outbreaks in multiple pig farms, leading to economic losses. Therefore, it is an urgent to understand the molecular mechanisms underlying the pathogenesis and immune evasion of Swine acute diarrhea syndrome coronavirus (SADS-CoV). Our research discovered that SADS-CoV inhibited the production of interferon-ß (IFN-ß) during viral infection. The nonstructural protein 1 (nsp1) prevented the phosphorylation of TBK1 by obstructing the interaction between TBK1 and Ub protein. Moreover, nsp1 induced the degradation of CREB-binding protein (CBP) through the proteasome-dependent pathway, thereby disrupting the IFN-ß enhancer and inhibiting IFN transcription. Finally, we identified nsp1-Phe39 as the critical amino acid that downregulated IFN production. In conclusion, our findings described two mechanisms in nsp1 that inhibited IFN production and provided new insights into the evasion strategy adopted by SADS-CoV to evade host antiviral immunity.


Subject(s)
Alphacoronavirus , CREB-Binding Protein , Animals , Swine , Phosphorylation , Amino Acids , Interferon-beta/genetics
16.
Front Immunol ; 14: 1187144, 2023.
Article in English | MEDLINE | ID: mdl-37593742

ABSTRACT

Interferon regulatory factor 8 (IRF8) is a key regulator of innate immune receptor signaling that resists pathogen invasion by regulating cell growth and differentiation. Porcine epidemic diarrhea virus (PEDV) targets the intestine and damages the mucosal barrier. However, whether IRF8 regulates PEDV replication remains unclear. We revealed that PEDV infection activated IRF8 expression. Moreover, IRF8 deletion drastically promoted PEDV replication and invasion, increasing the virus copies and titers. Hypomethylation enrichment of activating protein (AP)-2α was significantly negatively correlated with high IRF8 expression, and AP-2α directly targeted the IRF8 promoter to regulate PEDV replication. Furthermore, IRF8 overexpression decreased the cellular reactive oxygen species levels and mitochondrial membrane potential and increased the antioxidant enzyme activities to alleviate PEDV-induced oxidative damage. IRF8 overexpression suppressed apoptotic gene expression, thereby inhibiting apoptosis in response to PEDV stimulation. Taken together, this study demonstrates that AP-2α is involved in PEDV-induced epigenetic modification of IRF8 to reduce cell apoptosis and oxidative stress and facilitate host resistance to PEDV in the intestinal epithelium.


Subject(s)
Porcine epidemic diarrhea virus , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Jejunum , Interferon Regulatory Factors , Apoptosis/genetics
17.
BMC Genomics ; 24(1): 477, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612620

ABSTRACT

BACKGROUND: Numerous circular RNAs (circRNAs) have been recently identified in porcine tissues and cell types. Nevertheless, their significance in porcine spleen development is yet unelucidated. Herein, we reported an extensive overlook of circRNA expression profile during spleen development in Meishan pigs. RESULTS: Overall, 39,641 circRNAs were identified from 6,914 host genes. Among them, many circRNAs are up- or down-regulated at different time points of pig spleen development. Using WGCNA analysis, we revealed two essential modules for protein-coding genes and circRNAs. Subsequent correlation analysis revealed 67 circRNAs/co-expressed genes that participated in immnue-associated networks. Furthermore, a competing endogenous RNA (ceRNA) network analysis of circRNAs revealed that 12 circRNAs modulated CD226, MBD2, SAMD3, SIT1, SRP14, SYTL3 gene expressions via acting as miRNA sponges. Moreover, the circRNA_21767/miR-202-3p axis regulated SIT1 expression in a ceRNA manner, which is critical for the immune-based regulation of spleen development in Meishan pigs. CONCLUSIONS: Overall, our results demonstrated that the circRNAs were differentially expressed during different stages of porcine spleen development, meanwhile the circRNAs interacted with immune-related genes in a ceRNA-based fashion. Moreover, we presented biomedical researchers with RNAseqTools, a user-friendly and powerful software for the visualization of transcriptome profile data.


Subject(s)
MicroRNAs , RNA, Circular , Spleen , Swine , Animals , DNA-Binding Proteins , MicroRNAs/genetics , RNA, Circular/genetics , Spleen/growth & development , Spleen/physiology , Swine/genetics , Genome-Wide Association Study , China
18.
J Agric Food Chem ; 71(27): 10427-10437, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37384814

ABSTRACT

Mycotoxin-induced liver injury is often accompanied by oxidative stress (OS) and inflammation. This research aimed to explore the potential mechanism of sodium butyrate (NaBu) in modulating hepatic anti-oxidation and anti-inflammation pathways in deoxynivalenol (DON)-exposed piglets. The results show that DON induced liver injury, increased mononuclear cell infiltration, and decreased serum total protein and albumin concentrations. Transcriptomic analysis revealed that reactive oxygen species (ROS) and TNF-α pathways were highly activated upon DON exposure. This is associated with disturbed antioxidant enzymes and increased inflammatory cytokines secretion. Importantly, NaBu effectively reversed the alterations caused by DON. Mechanistically, the ChIP-seq result revealed that NaBu strongly depressed DON-increased enrichment of histone mark H3K27ac at the genes involved in ROS and TNF-α-mediated pathways. Notably, we demonstrated that nuclear receptor NR4A2 was activated by DON and remarkably recovered with the treatment of NaBu. In addition, the enhanced NR4A2 transcriptional binding enrichments at the promoter regions of OS and inflammatory genes were hindered by NaBu in DON-exposed livers. Consistently, elevated H3K9ac and H3K27ac occupancies were also observed at the NR4A2 binding regions. Taken together, our results indicated that a natural antimycotic additive, NaBu, could mitigate hepatic OS and inflammatory responses, possibly via NR4A2-mediated histone acetylation.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Histones , Animals , Swine , Butyric Acid/pharmacology , Histones/metabolism , Reactive Oxygen Species/metabolism , Acetylation , Tumor Necrosis Factor-alpha/metabolism , Oxidative Stress , Inflammation/drug therapy , Inflammation/genetics
19.
J Virol ; 97(6): e0068923, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37289083

ABSTRACT

Goblet cells and their secreted mucus are important elements of the intestinal mucosal barrier, which allows host cells to resist invasion by intestinal pathogens. Porcine deltacoronavirus (PDCoV) is an emerging swine enteric virus that causes severe diarrhea in pigs and causes large economic losses to pork producers worldwide. To date, the molecular mechanisms by which PDCoV regulates the function and differentiation of goblet cells and disrupts the intestinal mucosal barrier remain to be determined. Here, we report that in newborn piglets, PDCoV infection disrupts the intestinal barrier: specifically, there is intestinal villus atrophy, crypt depth increases, and tight junctions are disrupted. There is also a significant reduction in the number of goblet cells and the expression of MUC-2. In vitro, using intestinal monolayer organoids, we found that PDCoV infection activates the Notch signaling pathway, resulting in upregulated expression of HES-1 and downregulated expression of ATOH-1 and thereby inhibiting the differentiation of intestinal stem cells into goblet cells. Our study shows that PDCoV infection activates the Notch signaling pathway to inhibit the differentiation of goblet cells and their mucus secretion, resulting in disruption of the intestinal mucosal barrier. IMPORTANCE The intestinal mucosal barrier, mainly secreted by the intestinal goblet cells, is a crucial first line of defense against pathogenic microorganisms. PDCoV regulates the function and differentiation of goblet cells, thereby disrupting the mucosal barrier; however, the mechanism by which PDCoV disrupts the barrier is not known. Here, we report that in vivo, PDCoV infection decreases villus length, increases crypt depth, and disrupts tight junctions. Moreover, PDCoV activates the Notch signaling pathway, inhibiting goblet cell differentiation and mucus secretion in vivo and in vitro. Thus, our results provide a novel insight into the mechanism underlying intestinal mucosal barrier dysfunction caused by coronavirus infection.


Subject(s)
Coronavirus Infections , Goblet Cells , Receptors, Notch , Swine Diseases , Animals , Coronavirus , Coronavirus Infections/pathology , Coronavirus Infections/veterinary , Goblet Cells/cytology , Signal Transduction , Swine , Swine Diseases/pathology , Swine Diseases/virology , Stem Cells/cytology , Cell Differentiation , Receptors, Notch/metabolism
20.
Antiviral Res ; 216: 105652, 2023 08.
Article in English | MEDLINE | ID: mdl-37301446

ABSTRACT

Manipulation of the flavivirus genome to accommodate and express a heterologous gene of interest has become an attractive approach for gene delivery and the development of viral-vectored vaccines. However, due to the inherent genetic instability of the flavivirus genomes, the construction of recombinant viruses carrying a foreign gene could be problematic and heavily resistant. In this study, the possibility of the Japanese encephalitis virus (JEV) as a stable flavivirus vector for the expression of a foreign gene was assessed using reverse genetics. The full-length cDNA genome of genotype I (GI) JEV inherently possessed excellent stability and manipulability in a bacterial host, while mutations and deletions accumulated in the cDNA genomes of genotype Ⅲ (GⅢ) JEV strains. Using the GI JEV as backbones, we generate a panel of recombinant viruses expressing various foreign genes. All recombinant viruses exhibited excellent genetic stability and efficiently express foreign genes for at least ten serial passages in vitro. In application, a convenient, rapid and reliable image-based assay for neutralizing antibody testing and antiviral drug discovery was established with a mCherry-reporter recombinant virus (rBJ-mCherry). Meanwhile, the recombinant viruses expressing the antigens of the African swine fever virus (ASFV) or Classical swine fever virus (CSFV) could effectively induce antibody responses to the JEV vector and foreign antigens in a mouse vaccination model. Therefore, GI JEV strains could serve as viral vectors accommodating the expression of large foreign genes.


Subject(s)
African Swine Fever Virus , Encephalitis Virus, Japanese , Encephalitis Viruses, Japanese , Encephalitis, Japanese , Viral Vaccines , Mice , Swine , Animals , Encephalitis Virus, Japanese/genetics , DNA, Complementary , Encephalitis Viruses, Japanese/genetics , Gene Expression , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL