Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891412

ABSTRACT

Dielectric elastomers, such as thermoplastic polyurethanes (TPUs), are widely used as the dielectric layer, encapsulation layer, and substrate of flexible and stretchable devices. To construct capacitors and actuators that work stably upon deformation, it has become urgent to investigate the evolution of dielectricity under stress and strain. However, the lack of effective methods for estimating the dielectric constant of elastomers under strain poses a big challenge. This study reports a device for the in situ measurement of the dielectric constant of TPU under strain. It is found that upon stretching TPU to a strain of 400%, its dielectric constant decreases from 8.02 ± 0.01 to 2.88 ± 0.25 (at 1 MHz). In addition, combined Fourier-transform infrared spectroscopy, the X-ray scattering technique, and atomic force microscopy were utilized to characterize the evolution of the microstructure under strain. The investigation under tensile strain reveals a decreased density and average size of polarized hard domains, along with a tendency of the molecular chains to align in parallel with the tensile stress. The evolution of the microstructures results in a reduction in the measured dielectric constant in TPU.

2.
Adv Mater ; : e2311996, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776537

ABSTRACT

Emerging fields, such as wearable electronics, digital healthcare, the Internet of Things, and humanoid robots, highlight the need for flexible devices capable of recording signals on curved surfaces and soft objects. In particular, flexible magnetosensitive devices garner significant attention owing to their ability to combine the advantages of flexible electronics and magnetoelectronic devices, such as reshaping capability, conformability, contactless sensing, and navigation capability. Several key challenges must be addressed to develop well-functional flexible magnetic devices. These include determining how to make magnetic materials flexible and even elastic, understanding how the physical properties of magnetic films change under external strain and stress, and designing and constructing flexible magnetosensitive devices. In recent years, significant progress is made in addressing these challenges. This study aims to provide a timely and comprehensive overview of the most recent developments in flexible magnetosensitive devices. This includes discussions on the fabrications and mechanical regulations of flexible magnetic materials, the principles and performances of flexible magnetic sensors, and their applications for wearable electronics. In addition, future development trends and challenges in this field are discussed.

3.
Nano Lett ; 23(17): 8073-8080, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37615627

ABSTRACT

Due to the magnetoelastic coupling, the magnetic properties of many flexible magnetic films (such as Fe, Co, and Ni) are sensitive to mechanical stress, which deteriorates the performance of flexible magnetoelectronic devices. We show that by stacking Co and Pt alternatively to form multilayers with strong perpendicular magnetic anisotropy (PMA), both magnetic hysteresis and magnetic domain measurements reveal robust PMA against external stress. As the PMA weakens at increased Co thickness, the magnetic anisotropy is vulnerable to external stress. These results were understood based on a micromagnetic model, which suggests that the strength of magnetoelastic anisotropy with respect to initial effective magnetic anisotropy affects the stress-stability of the film. Although the stress coefficient of magnetoelastic anisotropy is enhanced at reduced Co thickness, the concomitant increase of initial effective magnetic anisotropy guarantees a robust PMA against external stress. Our results provide a route to constructing flexible magnetoelectronic devices with enhanced stress stability.

4.
Sensors (Basel) ; 23(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37112422

ABSTRACT

With the merits of high sensitivity, high stability, high flexibility, low cost, and simple manufacturing, flexible magnetic field sensors have potential applications in various fields such as geomagnetosensitive E-Skins, magnetoelectric compass, and non-contact interactive platforms. Based on the principles of various magnetic field sensors, this paper introduces the research progress of flexible magnetic field sensors, including the preparation, performance, related applications, etc. In addition, the prospects of flexible magnetic field sensors and their challenges are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...