Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
CNS Neurosci Ther ; 30(5): e14742, 2024 05.
Article in English | MEDLINE | ID: mdl-38715283

ABSTRACT

BACKGROUND: Adenosine A3 receptor (ADORA3) belongs to the adenosine receptor families and the role of ADORA3 in vascular dementia (VaD) is largely unexplored. The present study sought to determine the therapeutic role of ADORA3 antagonist in a mouse model of VaD. METHODS: The GSE122063 dataset was selected to screen the differential expression genes and pathways between VaD patients and controls. A mouse model of bilateral carotid artery stenosis (BCAS) was established. The cognitive functions were examined by the novel object recognition test, Y maze test, and fear of conditioning test. The white matter injury (WMI) was examined by 9.4 T MRI, western blot, and immunofluorescence staining. The mechanisms of ADORA3-regulated phagocytosis by microglia were examined using qPCR, western blot, dual immunofluorescence staining, and flow cytometry. RESULTS: The expression of ADORA3 was elevated in brain tissues of VaD patients and ADORA3 was indicated as a key gene for VaD in the GSE122063. In BCAS mice, the expression of ADORA3 was predominantly elevated in microglia in the corpus callosum. ADORA3 antagonist promotes microglial phagocytosis to myelin debris by facilitating cAMP/PKA/p-CREB pathway and thereby ameliorates WMI and cognitive impairment in BCAS mice. The therapeutic effect of ADORA3 antagonist was partially reversed by the inhibition of the cAMP/PKA pathway. CONCLUSIONS: ADORA3 antagonist alleviates chronic ischemic WMI by modulating myelin clearance of microglia, which may be a potential therapeutic target for the treatment of VaD.


Subject(s)
Dementia, Vascular , Mice, Inbred C57BL , Microglia , Phagocytosis , Receptor, Adenosine A3 , Animals , Humans , Male , Mice , Brain Ischemia/metabolism , Brain Ischemia/pathology , Carotid Stenosis , Dementia, Vascular/pathology , Dementia, Vascular/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Organic Chemicals , Phagocytosis/drug effects , Phagocytosis/physiology , Receptor, Adenosine A3/metabolism , Receptor, Adenosine A3/genetics , White Matter/pathology , White Matter/metabolism , White Matter/drug effects
2.
Cell Commun Signal ; 22(1): 271, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750493

ABSTRACT

BACKGROUND: Macrophages are key inflammatory immune cells that orchestrate the initiation and progression of autoimmune diseases. The characters of macrophage in diseases are determined by its phenotype in response to the local microenvironment. Ficolins have been confirmed as crucial contributors to autoimmune diseases, with Ficolin-2 being particularly elevated in patients with autoimmune diseases. However, whether Ficolin-A stimulates macrophage polarization is still poorly understood. METHODS: We investigated the transcriptomic expression profile of murine bone marrow-derived macrophages (BMDMs) stimulated with Ficolin-A using RNA-sequencing. To further confirm a distinct phenotype activated by Ficolin-A, quantitative RT-PCR and Luminex assay were performed in this study. Additionally, we assessed the activation of underlying cell signaling pathways triggered by Ficolin-A. Finally, the impact of Ficolin-A on macrophages were investigated in vivo through building Collagen-induced arthritis (CIA) and Dextran Sulfate Sodium Salt (DSS)-induced colitis mouse models with Fcna-/- mice. RESULTS: Ficolin-A activated macrophages into a pro-inflammatory phenotype distinct to LPS-, IFN-γ- and IFN-γ + LPS-induced phenotypes. The transcriptomic profile induced by Ficolin-A was primarily characterized by upregulation of interleukins, chemokines, iNOS, and Arginase 1, along with downregulation of CD86 and CD206, setting it apart from the M1 and M2 phenotypes. The activation effect of Ficolin-A on macrophages deteriorated the symptoms of CIA and DSS mouse models, and the deletion of Fcna significantly alleviated the severity of diseases in mice. CONCLUSION: Our work used transcriptomic analysis by RNA-Seq to investigate the impact of Ficolin-A on macrophage polarization. Our findings demonstrate that Ficolin-A induces a novel pro-inflammatory phenotype distinct to the phenotypes activated by LPS, IFN-γ and IFN-γ + LPS on macrophages.


Subject(s)
Ficolins , Inflammation , Lectins , Macrophages , Mice, Inbred C57BL , Phenotype , Animals , Macrophages/metabolism , Macrophages/drug effects , Lectins/genetics , Lectins/metabolism , Mice , Inflammation/genetics , Inflammation/pathology , Macrophage Activation/drug effects , Colitis/chemically induced , Colitis/pathology , Colitis/genetics , Cell Polarity/drug effects , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Signal Transduction/drug effects
3.
Theranostics ; 14(6): 2379-2395, 2024.
Article in English | MEDLINE | ID: mdl-38646644

ABSTRACT

Background: It is poorly understood what cellular types participate in ductular reaction (DR) and whether DR facilitates recovery from injury or accelerates hepatic fibrosis. The aim of this study is to gain insights into the role of hepatic progenitor cell (HPC)-originated DR during fibrotic progression. Methods: DR in liver specimens of PBC, chronic HBV infection (CHB) or NAFLD, and four rodent fibrotic models by different pathogenic processes was evaluated. Gli1 expression was inhibited in rodent models or cell culture and organoid models by AAV-shGli1 or treating with GANT61. Results: Severity of liver fibrosis was positively correlated with DR extent in patients with PBC, CHB or NAFLD. HPCs were activated, expanded, differentiated into reactive cholangiocytes and constituted "HPC-originated DR", accompanying with exacerbated fibrosis in rodent models of HPC activation & proliferation (CCl4/2-AAF-treated), Μdr2-/- spontaneous PSC, BDL-cholestatic fibrosis or WD-fed/CCl4-treated NASH-fibrosis. Gli1 expression was significantly increased in enriched pathways in vivo and in vitro. Enhanced Gli1 expression was identified in KRT19+-reactive cholangiocytes. Suppressing Gli1 expression by administration of AAV-shGli1 or GANT61 ameliorated HPC-originated DR and fibrotic extent. KRT19 expression was reduced after GANT61 treatment in sodium butyrate-stimulated WB-F344 cells or organoids or in cells transduced with Gli1 knockdown lentiviral vectors. In contrast, KRT19 expression was elevated after transducing Gli1 overexpression lentiviral vectors in these cells. Conclusions: During various modes of chronic injury, Gli1 acted as an important mediator of HPC activation, expansion, differentiation into reactive cholangiocytes that formed DR, and subsequently provoked hepatic fibrogenesis.


Subject(s)
Hedgehog Proteins , Liver Cirrhosis , Signal Transduction , Stem Cells , Zinc Finger Protein GLI1 , Animals , Female , Humans , Male , Mice , Rats , Cell Differentiation , Disease Models, Animal , Hedgehog Proteins/metabolism , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/complications , Liver/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Pyridines/pharmacology , Pyrimidines/pharmacology , Stem Cells/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics
4.
Alzheimers Dement ; 20(5): 3504-3524, 2024 May.
Article in English | MEDLINE | ID: mdl-38605605

ABSTRACT

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Subject(s)
Aging , Cognitive Dysfunction , Nuclear Receptor Subfamily 4, Group A, Member 1 , Animals , Cognitive Dysfunction/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Mice , Humans , Aging/physiology , Male , CA1 Region, Hippocampal/metabolism , Pyramidal Cells/metabolism , Receptor, trkB/metabolism , Leukocytes, Mononuclear/metabolism , Aged , Female , Mice, Inbred C57BL
5.
CNS Neurosci Ther ; 30(4): e14696, 2024 04.
Article in English | MEDLINE | ID: mdl-38668740

ABSTRACT

AIMS: Excessive neuroinflammation mediated mainly by microglia plays a crucial role in ischemic stroke. AZD1390, an ataxia telangiectasia mutated (ATM) specific inhibitor, has been shown to promote radio-sensitization and survival in central nervous system malignancies, while the role of AZD1390 in ischemic stroke remains unknown. METHODS: Real-time PCR, western blot, immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assays were used to assess the activation of microglia and the release of inflammatory cytokines. Behavioral tests were performed to measure neurological deficits. 2,3,5-Triphenyltetrazolium chloride staining was conducted to assess the infarct volume. The activation of NF-κB signaling pathway was explored through immunofluorescence staining, western blot, co-immunoprecipitation and proximity ligation assay. RESULTS: The level of pro-inflammation cytokines and activation of NF-κB signaling pathway was suppressed by AZD1390 in vitro and in vivo. The behavior deficits and infarct size were partially restored with AZD1390 treatment in experimental stroke. AZD1390 restrict ubiquitylation and sumoylation of the essential regulatory subunit of NF-κB (NEMO) in an ATM-dependent and ATM-independent way respectively, which reduced the activation of the NF-κB pathway. CONCLUSION: AZD1390 suppressed NF-κB signaling pathway to alleviate ischemic brain injury in experimental stroke, and attenuated microglia activation and neuroinflammation, which indicated that AZD1390 might be an attractive agent for the treatment of ischemic stroke.


Subject(s)
Microglia , Neuroinflammatory Diseases , Pyridines , Quinolones , Animals , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Cytokines/metabolism , Signal Transduction/drug effects
6.
BMC Cancer ; 24(1): 372, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528507

ABSTRACT

BACKGROUND: Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) recommended for the patients with subsolid nodule in early lung cancer stage is not routinely. The clinical value and impact in patients with EGFR mutation on survival outcomes is further needed to be elucidated to decide whether the application of EGFR-TKIs was appropriate in early lung adenocarcinoma (LUAD) stage appearing as subsolid nodules. MATERIALS AND METHODS: The inclusion of patients exhibiting clinical staging of IA-IIB subsolid nodules. Clinical information, computed tomography (CT) features before surgical resection and pathological characteristics including tertiary lymphoid structures of the tumors were recorded for further exploration of correlation with EGFR mutation and prognosis. RESULTS: Finally, 325 patients were enrolled into this study, with an average age of 56.8 ± 9.8 years. There are 173 patients (53.2%) harboring EGFR mutation. Logistic regression model analysis showed that female (OR = 1.944, p = 0.015), mix ground glass nodule (OR = 2.071, p = 0.003, bubble-like lucency (OR = 1.991, p = 0.003) were significant risk factors of EGFR mutations. Additionally, EGFR mutations were negatively correlated with TLS presence and density. Prognosis analysis showed that the presence of TLS was associated with better recurrence-free survival (RFS)(p = 0.03) while EGFR mutations were associated with worse RFS(p = 0.01). The RFS in patients with TLS was considerably excel those without TLS within EGFR wild type group(p = 0.018). Multivariate analyses confirmed that EGFR mutation was an independent prognostic predictor for RFS (HR = 3.205, p = 0.037). CONCLUSIONS: In early-phase LUADs, subsolid nodules with EGFR mutation had specific clinical and radiological signatures. EGFR mutation was associated with worse survival outcomes and negatively correlated with TLS, which might weaken the positive impact of TLS on prognosis. Highly attention should be paid to the use of EGFR-TKI for further treatment as agents in early LUAD patients who carrying EGFR mutation.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Tertiary Lymphoid Structures , Humans , Female , Middle Aged , Aged , Retrospective Studies , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Prognosis , Mutation , ErbB Receptors/genetics , ErbB Receptors/therapeutic use
7.
Clin Transl Med ; 14(3): e1613, 2024 03.
Article in English | MEDLINE | ID: mdl-38451000

ABSTRACT

The emergence of immune checkpoint inhibitors (ICIs) has heralded a transformative era in the therapeutic landscape of non-small cell lung cancer (NSCLC). While ICIs have demonstrated clinical efficacy in a portion of patients with NSCLC, these treatments concurrently precipitate a spectrum of immune-related adverse events (irAEs), encompassing mild to severe manifestations, collectively posing a risk of significant organ damage. Consequently, there exists an imperative to augment our comprehension of the pathophysiological underpinnings of irAEs and to formulate more efficacious preventive and ameliorative strategies. In this comprehensive review, we delineate the clinical presentation of organ-specific irAEs in patients with NSCLC and provide an in-depth analysis of recent advancements in understanding the mechanisms driving ICI-induced toxicity. Furthermore, we discuss potential strategies and targets for ameliorating these irAEs. Ultimately, this review aims to furnish valuable insights to guide further research endeavours in the context of irAEs in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Immune Checkpoint Inhibitors/adverse effects
8.
Neurochem Int ; 175: 105676, 2024 May.
Article in English | MEDLINE | ID: mdl-38336256

ABSTRACT

BACKGROUND: Microglia-mediated neuroinflammation is the major contributor to the secondary brain injury of ischemic stroke. NLRP3 is one of the major components of ischemia-induced microglial activation. Echinatin, a chalcone found in licorice, was reported to have the activity of anti-inflammation and antioxidant. However, the relative study of echinatin in microglia or ischemic stroke is still unclear. METHODS: We intravenously injected echinatin or vehicle into adult ischemic male C57/BL6J mice induced by 60-min transient middle cerebral artery occlusion (tMCAO). The intraperitoneal injection was performed 4.5 h after reperfusion and then daily for 2 more days. Infarct size, blood brain barrier (BBB) leakage, neurobehavioral tests, and microglial-mediated inflammatory reaction were examined to assess the outcomes of echinatin treatment. LPS and LPS/ATP stimulation on primary microglia were used to explore the underlying anti-inflammatory mechanism of echinatin. RESULTS: Echinatin treatment efficiently decreased the infarct size, alleviated blood brain barrier (BBB) damage, suppressed microglial activation, reduced the production of inflammatory factors (e.g., IL-1ß, IL-6, IL-18, TNF-α, iNOS, COX2), and relieved post-stroke neurological defects in tMCAO mice. Mechanistically, we found that echinatin could suppress the NLRP3 assembly and reduce the production of inflammatory mediators independently of NF-κB and monoamine oxidase (MAO). CONCLUSION: Based on our study, we have identified echinatin as a promising therapeutic strategy for the treatment of ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Chalcones , Ischemic Stroke , Reperfusion Injury , Mice , Male , Animals , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases , Lipopolysaccharides , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/complications , Infarction/complications , Infarction/drug therapy , Anti-Inflammatory Agents/therapeutic use , Brain Injuries/drug therapy , Ischemic Stroke/drug therapy , Brain Ischemia/drug therapy , Brain Ischemia/prevention & control , Brain Ischemia/complications , Microglia , Reperfusion Injury/drug therapy
9.
Eur J Pharmacol ; 969: 176409, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38365105

ABSTRACT

During the inflammatory response after stroke, the blood-brain barrier (BBB) is significantly disrupted, compromising its integrity. This disruption allows many peripheral neutrophils to infiltrate the injury site in the brain and release neutrophil extracellular traps (NETs), which further increase BBB permeability. In this study, we aimed to investigate the protective effects of γ-Glutamylcysteine (γ-GC), an immediate precursor of GSH, against BBB breakdown and NET formation after ischemic stroke. Our data indicated that γ-GC treatment effectively attenuated BBB damage, decreased neutrophil infiltration, and suppressed the release of NETs, ultimately leading to the amelioration of ischemic injury. Transcriptomic data and subsequent validation studies revealed that mechanistically, γ-GC exerts its effect by activating the Wnt/ß-catenin pathway after ischemic stroke. This research suggests that γ-GC may hold promise as a therapeutic agent for alleviating brain injury following an ischemic stroke.


Subject(s)
Dipeptides , Extracellular Traps , Ischemic Stroke , Stroke , Mice , Animals , Blood-Brain Barrier/metabolism , Extracellular Traps/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , beta Catenin/metabolism , Stroke/drug therapy , Stroke/metabolism , Permeability
10.
Int Immunopharmacol ; 129: 111648, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38335656

ABSTRACT

AIMS: To study the role of Aucubin (AU) in cerebral ischemia-reperfusion injury and investigate the potential mechanisms. METHODS: For the in vitro experiment, primary microglia were cultured and stimulated by Lipopolysaccharides (LPS) and treated with AU. Male C57/BL6J mice were used and middle cerebral artery occlusion (MCAO) model was performed to induce cerebral ischemia-reperfusion injury. For the short-term effects, mice administrated with AU (40 mg/kg) for 3 days after MCAO were evaluated for the infarct volume and neurological deficits. The neuroinflammatory factors and microglia activation were determined by Real-time PCR, western blot and immunofluorescence staining. For the long-term effects, MCAO mice were injected daily with AU (5 mg/kg or 10 mg/kg) for 28 days. Behavior tests were used to assess the neurological deficits of MCAO mice, and white matter integrity was determined by myelin basic protein (MBP) staining and black-gold staining. RESULTS: AU suppressed LPS-induced activation of microglia and pro-inflammatory cytokines release, and downregulated the NF-κB and MAPK pathways in primary microglia. In addition, AU attenuated ischemic injury and inhibited the neuro-inflammatory response in MCAO mice. Moreover, AU induced prolonged improvements in sensorimotor function and memory function following MCAO, and preserved white matter integrity in the long-term experiments. CONCLUSIONS: AU protected against ischemic injury, which might be correlated with the downregulation of NF-κB and MAPK signaling pathways. Furthermore, AU alleviated cognitive impairment after stroke and restored white matter integrity. Our data indicated that AU might be a potential compound for the treatment of stroke and post-stroke cognitive impairment.


Subject(s)
Brain Ischemia , Iridoid Glucosides , Neuroprotective Agents , Reperfusion Injury , Stroke , Mice , Male , Animals , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Lipopolysaccharides/pharmacology , Stroke/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Microglia , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
11.
Nat Commun ; 15(1): 13, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253559

ABSTRACT

Data-centric applications are pushing the limits of energy-efficiency in today's computing systems, including those based on phase-change memory (PCM). This technology must achieve low-power and stable operation at nanoscale dimensions to succeed in high-density memory arrays. Here we use a novel combination of phase-change material superlattices and nanocomposites (based on Ge4Sb6Te7), to achieve record-low power density ≈ 5 MW/cm2 and ≈ 0.7 V switching voltage (compatible with modern logic processors) in PCM devices with the smallest dimensions to date (≈ 40 nm) for a superlattice technology on a CMOS-compatible substrate. These devices also simultaneously exhibit low resistance drift with 8 resistance states, good endurance (≈ 2 × 108 cycles), and fast switching (≈ 40 ns). The efficient switching is enabled by strong heat confinement within the superlattice materials and the nanoscale device dimensions. The microstructural properties of the Ge4Sb6Te7 nanocomposite and its high crystallization temperature ensure the fast-switching speed and stability in our superlattice PCM devices. These results re-establish PCM technology as one of the frontrunners for energy-efficient data storage and computing.

12.
J Neuroinflammation ; 21(1): 35, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287411

ABSTRACT

BACKGROUND: Microglia is the major contributor of post-stroke neuroinflammation cascade and the crucial cellular target for the treatment of ischemic stroke. Currently, the endogenous mechanism underlying microglial activation following ischemic stroke remains elusive. Serglycin (SRGN) is a proteoglycan expressed in immune cells. Up to now, the role of SRGN on microglial activation and ischemic stroke is largely unexplored. METHODS: Srgn knockout (KO), Cd44-KO and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO) to mimic ischemic stroke. Exogenous SRGN supplementation was achieved by stereotactic injection of recombinant mouse SRGN (rSRGN). Cerebral infarction was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Neurological functions were evaluated by the modified neurological severity score (mNSS) and grip strength. Microglial activation was detected by Iba1 immunostaining, morphological analysis and cytokines' production. Neuronal death was examined by MAP2 immunostaining and FJB staining. RESULTS: The expression of SRGN and its receptor CD44 was significantly elevated in the ischemic mouse brains, especially in microglia. In addition, lipopolysaccharide (LPS) induced SRGN upregulation in microglia in vitro. rSRGN worsened ischemic brain injury in mice and amplified post-stroke neuroinflammation, while gene knockout of Srgn exerted reverse impacts. rSRGN promoted microglial proinflammatory activation both in vivo and in vitro, whereas Srgn-deficiency alleviated microglia-mediated inflammatory response. Moreover, the genetic deletion of Cd44 partially rescued rSRGN-induced excessed neuroinflammation and ischemic brain injury in mice. Mechanistically, SRGN boosted the activation of NF-κB signal, and increased glycolysis in microglia. CONCLUSION: SRGN acts as a novel therapeutic target in microglia-boosted proinflammatory response following ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Stroke , Vesicular Transport Proteins , Animals , Mice , Microglia/metabolism , Brain Ischemia/metabolism , Neuroinflammatory Diseases , Stroke/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/metabolism , Proteoglycans/metabolism , Ischemic Stroke/metabolism , Brain Injuries/metabolism
13.
Brain Res Bull ; 207: 110868, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181967

ABSTRACT

Due to various factors, there is still a lack of effective neuroprotective agents for ischemic stroke in clinical practice. Neuroinflammation and neuronal apoptosis mediated by endoplasmic reticulum stress are some of the important pathological mechanisms in ischemic stroke. Linarin has been reported to have anti-inflammation, antioxidant, and anti-apoptotic effects in myocardial ischemia, osteoarthritis, and kidney disease. Whether it exerts neuroprotective functions in ischemic stroke has not been investigated. The results showed that linarin could reduce the infarct volume in cerebral ischemia animal models, improve the neurological function scores and suppress the expression of inflammatory factors mediating the NF-κB. Meanwhile, it could protect the neurons from OGD/R-induced-apoptosis, which was related to the PERK-eIF2α pathway. Our results suggested linarin could inhibit neuronal inflammation and apoptosis induced by endoplasmic reticulum stress. Furthermore, the neuroprotective effect of linarin may be related to the inhibition of AKR1B1. Our study offers new insight into protecting against ischemia-reperfusion injury by linarin treatment in stroke.


Subject(s)
Brain Ischemia , Glycosides , Ischemic Stroke , Neuroprotective Agents , Reperfusion Injury , Animals , Signal Transduction , Reperfusion Injury/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Ischemic Stroke/drug therapy , Endoplasmic Reticulum Stress , Apoptosis , Infarction, Middle Cerebral Artery/metabolism
14.
Eur J Pharmacol ; 962: 176201, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37984728

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease in the central nervous system caused by T cell activation mediated by peripheral macrophages, resulting in severe neurological deficits and disability. Due to the currently limited and expensive treatments for MS, we here introduce an economic Chinese medicine extract, (5R)-5-Hydroxytriptolide (LLDT-8), which shows low toxicity and high immunosuppressive activity. We used the widely accepted mouse model of MS, experimental autoimmune encephalomyelitis (EAE), to examine the immunosuppressive effect of LLDT-8 in vivo. Through the RNA-sequence analysis of peripheral macrophages in EAE mice, we discovered that LLDT-8 alleviates the symptoms of EAE by inhibiting the proinflammatory effect of macrophages, thereby blocking the activation and proliferation of T cells. In all, we found that LLDT-8 could be a potential treatment for MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , T-Lymphocytes , Macrophages , Lymphocyte Activation , Disease Models, Animal , Mice, Inbred C57BL
15.
Neurosci Bull ; 40(4): 483-499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37979054

ABSTRACT

Chronic cerebral hypoperfusion is one of the pathophysiological mechanisms contributing to cognitive decline by causing white matter injury. Microglia phagocytosing myelin debris in a timely manner can promote remyelination and contribute to the repair of white matter. However, milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a microglial phagocytosis-related protein, has not been well studied in hypoperfusion-related cognitive dysfunction. We found that the expression of MFG-E8 was significantly decreased in the brain of mice after bilateral carotid artery stenosis (BCAS). MFG-E8 knockout mice demonstrated more severe BCAS-induced cognitive impairments in the behavioral tests. In addition, we discovered that the deletion of MFG-E8 aggravated white matter damage and the destruction of myelin microstructure through fluorescent staining and electron microscopy. Meanwhile, MFG-E8 overexpression by AAV improved white matter injury and increased the number of mature oligodendrocytes after BCAS. Moreover, in vitro and in vivo experiments showed that MFG-E8 could enhance the phagocytic function of microglia via the αVß3/αVß5/Rac1 pathway and IGF-1 production to promote the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes. Interestingly, we found that MFG-E8 was mainly derived from astrocytes, not microglia. Our findings suggest that MFG-E8 is a potential therapeutic target for cognitive impairments following cerebral hypoperfusion.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Remyelination , Mice , Animals , Myelin Sheath , Phagocytosis/physiology , Microglia/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Brain Ischemia/complications , Brain Ischemia/metabolism , Mice, Knockout , Mice, Inbred C57BL
16.
Neurosci Bull ; 40(4): 451-465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38113014

ABSTRACT

Moyamoya disease (MMD) is a chronic occlusive cerebrovascular disease with the development of a network of abnormal vessels. Immune inflammation is associated with the occurrence and development of MMD. However, the mechanisms underlying the formation of the abnormal vascular network remain unclear. Twenty-eight patients with MMD, 26 ischemic stroke patients, and 26 unrelated healthy volunteers were enrolled in this study The data showed that the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) were higher in MMD patients than in healthy controls (P <0.01), and GM-CSF was mainly from Th1 and Th17 cells in MMD. We found that increased GM-CSF drove monocytes to secrete a series of cytokines associated with angiogenesis, inflammation, and chemotaxis. In summary, our findings demonstrate for the first time the important involvement of GM-CSF in MMD and that GM-CSF is an important factor in the formation of abnormal vascular networks in MMD.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Moyamoya Disease , Humans , Inflammation
17.
J Cereb Blood Flow Metab ; 44(1): 77-93, 2024 01.
Article in English | MEDLINE | ID: mdl-37794790

ABSTRACT

Ischemic white matter injury leads to long-term neurological deficits and lacks effective medication. Growth arrest specific protein 6 (Gas6) clears myelin debris, which is hypothesized to promote white matter integrity in experimental stroke models. By the middle cerebral artery occlusion (MCAO) stroke model, we observed that Gas6 reduced infarcted volume and behavior deficits 4 weeks after MCAO. Compared with control mice, Gas6-treatment mice represented higher FA values in the ipsilateral external capsules by MRI DTI scan. The SMI32/MBP ratio of the ipsilateral cortex and striatum was profoundly alleviated by Gas6 administration. Gas6-treatment group manifested thicker myelin sheaths than the control group by electron microscopy. We observed that Gas6 mainly promoted OPC maturation, which was closely related to microglia. Mechanically, Gas6 accelerated microglia-mediated myelin debris clearance and cholesterol transport protein expression (abca1, abcg1, apoc1, apoe) in vivo and in vitro, accordingly less myelin debris and lipid deposited in Gas6 treated stroke mice. HX531 (RXR inhibitor) administration mitigated the functions of Gas6 in speeding up debris clearance and cholesterol transport protein expression. Generally, we concluded that Gas6 cleared myelin debris and promoted cholesterol transportation protein expression through activating RXR, which could be one critical mechanism contributing to white matter repair after stroke.


Subject(s)
Brain Injuries , Ischemic Stroke , Stroke , White Matter , Mice , Animals , Stroke/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Microglia , Cholesterol/pharmacology , Cholesterol/therapeutic use , Carrier Proteins
18.
Genome Med ; 15(1): 109, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082331

ABSTRACT

BACKGROUND: Damage in the ischemic core and penumbra after stroke affects patient prognosis. Microglia immediately respond to ischemic insult and initiate immune inflammation, playing an important role in the cellular injury after stroke. However, the microglial heterogeneity and the mechanisms involved remain unclear. METHODS: We first performed single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) on middle cerebral artery occlusion (MCAO) mice from three time points to determine stroke-associated microglial subclusters and their spatial distributions. Furthermore, the expression of microglial subcluster-specific marker genes and the localization of different microglial subclusters were verified on MCAO mice through RNAscope and immunofluorescence. Gene set variation analysis (GSVA) was performed to reveal functional characteristics of microglia sub-clusters. Additionally, ingenuity pathway analysis (IPA) was used to explore upstream regulators of microglial subclusters, which was confirmed by immunofluorescence, RT-qPCR, shRNA-mediated knockdown, and targeted metabolomics. Finally, the infarct size, neurological deficits, and neuronal apoptosis were evaluated in MCAO mice after manipulation of specific microglial subcluster. RESULTS: We discovered stroke-associated microglial subclusters in the brains of MCAO mice. We also identified novel marker genes of these microglial subclusters and defined these cells as ischemic core-associated (ICAM) and ischemic penumbra-associated (IPAM) microglia, according to their spatial distribution. ICAM, induced by damage-associated molecular patterns, are probably fueled by glycolysis, and exhibit increased pro-inflammatory cytokines and chemokines production. BACH1 is a key transcription factor driving ICAM generation. In contrast, glucocorticoids, which are enriched in the penumbra, likely trigger IPAM formation, which are presumably powered by the citrate cycle and oxidative phosphorylation and are characterized by moderate pro-inflammatory responses, inflammation-alleviating metabolic features, and myelinotrophic properties. CONCLUSIONS: ICAM could induce excessive neuroinflammation, aggravating brain injury, whereas IPAM probably exhibit neuroprotective features, which could be essential for the homeostasis and survival of cells in the penumbra. Our findings provide a biological basis for targeting specific microglial subclusters as a potential therapeutic strategy for ischemic stroke.


Subject(s)
Brain Ischemia , Stroke , Animals , Mice , Humans , Microglia/metabolism , Stroke/genetics , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/genetics , Brain Ischemia/metabolism , Inflammation/genetics , Inflammation/metabolism
19.
J Neuroinflammation ; 20(1): 260, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37951917

ABSTRACT

BACKGROUND: Emerging evidence has shown that myeloid cells that infiltrate into the peri-infarct region may influence the progression of ischemic stroke by interacting with microglia. Properdin, which is typically secreted by immune cells such as neutrophils, monocytes, and T cells, has been found to possess damage-associated molecular patterns (DAMPs) properties and can perform functions unrelated to the complement pathway. However, the role of properdin in modulating microglia-mediated post-stroke neuroinflammation remains unclear. METHODS: Global and conditional (myeloid-specific) properdin-knockout mice were subjected to transient middle cerebral artery occlusion (tMCAO). Histopathological and behavioral tests were performed to assess ischemic brain injury in mice. Single-cell RNA sequencing and immunofluorescence staining were applied to explore the source and the expression level of properdin. The transcriptomic profile of properdin-activated primary microglia was depicted by transcriptome sequencing. Lentivirus was used for macrophage-inducible C-type lectin (Mincle) silencing in microglia. Conditioned medium from primary microglia was administered to primary cortex neurons to determine the neurotoxicity of microglia. A series of cellular and molecular biological techniques were used to evaluate the proinflammatory response, neuronal death, protein-protein interactions, and related signaling pathways, etc. RESULTS: The level of properdin was significantly increased, and brain-infiltrating neutrophils and macrophages were the main sources of properdin in the ischemic brain. Global and conditional myeloid knockout of properdin attenuated microglial overactivation and inflammatory responses at the acute stage of tMCAO in mice. Accordingly, treatment with recombinant properdin enhanced the production of proinflammatory cytokines and augmented microglia-potentiated neuronal death in primary culture. Mechanistically, recombinant properdin served as a novel ligand that activated Mincle receptors on microglia and downstream pathways to drive primary microglia-induced inflammatory responses. Intriguingly, properdin can directly bind to the microglial Mincle receptor to exert the above effects, while Mincle knockdown limits properdin-mediated microglial inflammation. CONCLUSION: Properdin is a new medium by which infiltrating peripheral myeloid cells communicate with microglia, further activate microglia, and exacerbate brain injury in the ischemic brain, suggesting that targeted disruption of the interaction between properdin and Mincle on microglia or inhibition of their downstream signaling may improve the prognosis of ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Mice , Animals , Microglia/metabolism , Ischemic Stroke/metabolism , Properdin/metabolism , Properdin/pharmacology , Neuroinflammatory Diseases , Macrophages/metabolism , Infarction, Middle Cerebral Artery/pathology , Brain Injuries/metabolism , Brain Ischemia/metabolism , Mice, Inbred C57BL
20.
BMC Pulm Med ; 23(1): 411, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898737

ABSTRACT

OBJECTIVES: To examine the characteristics of blood lymphocyte subsets in dermatomyositis-interstitial lung disease (DM-ILD) inflicted patients with positive anti-melanoma differentiation-associated gene 5 (anti-MDA5), as well as its prognosis value in this set of patients. METHODS: Data were retrospectively collected from 253 DM-ILD patients from three hospitals in China between January 2016 to January 2021. Patients were grouped into anti-MDA5 antibody positive group (MDA5+ DM-ILD) and anti-MDA5 antibody negative group (MDA5- DM-ILD) based on myositis-specific autoantibody test results. Demographic characteristics, lymphocyte subsets patterns and other clinical features were compared between the two groups. The association of lymphocyte subsets with 180-day mortality was investigated using survival analysis in MDA5+ DM-ILD. RESULTS: Out of 253 eligible patients with DM-ILD, 59 patients were anti-MDA5+ and 194 were anti-MDA5-. Peripheral blood lymphocyte count, CD3+ count, percentage of CD3+, CD3+CD4+ count, and CD3+CD8+ count was lower in MDA5+ DM-ILD than in MDA5- DM-ILD- (all P < 0.001) as well as CD3-CD19+ count (P = 0.04). In MDA5+ DM-ILD, CD3+CD8+ count ≤ 49.22 cell/µL (HR = 3.81, 95%CI [1.20,12.14]) and CD3-CD19+ count ≤ 137.64 cell/µL (HR = 3.43, 95%CI [1.15,10.24]) were independent predictors of mortality. CD3+CD8+ count ≤ 31.38 cell/µL was associated with a higher mortality risk in all DM-ILD patients (HR = 8.6, 95%CI [2.12,31.44]) after adjusting for anti-MDA5 and other clinical characteristics. CONCLUSION: Significant lymphocytes decrease was observed in MDA5+ DM-ILD patients. CD3+CD8+ cell count was associated with worse prognosis in both MDA5+ DM-ILD and all DM-ILD patients.


Subject(s)
Dermatomyositis , Lung Diseases, Interstitial , Humans , Prognosis , Retrospective Studies , Interferon-Induced Helicase, IFIH1 , Lung Diseases, Interstitial/complications , Autoantibodies , Lymphocyte Subsets , Lymphocyte Count
SELECTION OF CITATIONS
SEARCH DETAIL
...