Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Discov ; 9(1): 76, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37488138

ABSTRACT

IscU2 is a scaffold protein that is critical for the assembly of iron-sulfur (Fe-S) clusters and the functions of Fe-S-containing mitochondrial proteins. However, the role of IscU2 in tumor development remains unclear. Here, we demonstrated that IscU2 expression is much higher in human pancreatic ductal adenocarcinoma (PDAC) tissues than in adjacent normal pancreatic tissues. In PDAC cells, activated KRAS enhances the c-Myc-mediated IscU2 transcription. The upregulated IscU2 stabilizes Fe-S cluster and regulates the activity of tricarboxylic acid (TCA) cycle enzymes α-ketoglutarate (α-KG) dehydrogenase and aconitase 2, which promote α-KG catabolism through oxidative and reductive TCA cycling, respectively. In addition to promoting mitochondrial functions, activated KRAS-induced and IscU2-dependent acceleration of α-KG catabolism results in reduced α-KG levels in the cytosol and nucleus, leading to an increase in DNA 5mC due to Tet methylcytosine dioxygenase 3 (TET3) inhibition and subsequent expression of genes including DNA polymerase alpha 1 catalytic subunit for PDAC cell proliferation and tumor growth in mice. These findings underscore a critical role of IscU2 in KRAS-promoted α-KG catabolism, 5mC-dependent gene expression, and PDAC growth and highlight the instrumental and integrated regulation of mitochondrial functions and gene expression by IscU2 in PDAC cells.

2.
Oxid Med Cell Longev ; 2022: 9982449, 2022.
Article in English | MEDLINE | ID: mdl-35464760

ABSTRACT

Mitochondrial DNA (mtDNA) mutations have been identified in various human cancers, including thyroid cancer. However, the relationship between mtDNA and thyroid cancer remains unclear. Previous studies by others and us strongly suggested that mtDNA mutations in complex I may participate in thyroid cancer processes according to sequencing results of thyroid cancer tissue, although the associated pathogenic processes remain unknown. Here, to investigate whether mtDNA mutations contribute to thyroid cancer, we reanalyzed our sequencing results and characterized thyroid cancer-associated mutations in the mitochondrial complex. The results identified the highest mutation frequencies in nicotinamide adenine dinucleotide hydride (NADH) dehydrogenase subunit 4 gene (ND4) and cytochrome c oxidase subunit 1 gene (COI), which also harbored the highest rates of G > A substitutions, with most of the mutations resulting in changes in the polarity of amino acids. We then established cybrids containing the G3842A mutation identified in papillary thyroid carcinoma, which revealed it as a mutation in NADH dehydrogenase subunit 1 gene (ND1) and is previously reported in follicular thyroid carcinoma, thereby suggesting a possibly pathogenic role in thyroid carcinoma. Additionally, we found that the G3842A mutation accelerates tumorigenicity and decreases the abundance and activity of mitochondrial complex I, the oxygen consumption rate, and adenosine triphosphate levels. By contrast, the levels of reactive oxygen species (ROS) were increased to activate extracellular signal-regulated kinase (ERK1/2) signaling, which contributed to tumorigenicity. These findings suggest for the first time that mtDNA mutations help drive tumor development and that G3842A may represent a new risk factor for thyroid cancer. Furthermore, our findings indicate that drugs targeting ROS and ERK1/2 may serve as a viable therapeutic strategy for thyroid cancer.


Subject(s)
DNA, Mitochondrial , Thyroid Neoplasms , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Humans , MAP Kinase Signaling System/genetics , Mutation/genetics , Reactive Oxygen Species/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
3.
Front Cell Dev Biol ; 9: 618492, 2021.
Article in English | MEDLINE | ID: mdl-34552920

ABSTRACT

OBJECTIVE: We proposed that the deficit of ACC1 is the cause of patient symptoms including global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. We evaluated the possible disease-causing role of the ACACA gene in developmental delay and investigated the pathogenesis of ACC1 deficiency. METHODS: A patient who presented with global developmental delay with unknown cause was recruited. Detailed medical records were collected and reviewed. Whole exome sequencing found two variants of ACACA with unknown significance. ACC1 mRNA expression level, protein expression level, and enzyme activity level were detected in patient-derived cells. Lipidomic analysis, and in vitro functional studies including cell proliferation, apoptosis, and the migratory ability of patient-derived cells were evaluated to investigate the possible pathogenic mechanism of ACC1 deficiency. RNAi-induced ACC1 deficiency fibroblasts were established to assess the causative role of ACC1 deficit in cell migratory disability in patient-derived cells. Palmitate supplementation assays were performed to assess the effect of palmitic acid on ACC1 deficiency-induced cell motility deficit. RESULTS: The patient presented with global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. A decreased level of ACC1 and ACC1 enzyme activity were detected in patient-derived lymphocytes. Lipidomic profiles revealed a disruption in the lipid homeostasis of the patient-derived cell lines. In vitro functional studies revealed a deficit of cell motility in patient-derived cells and the phenotype was further recapitulated in ACC1-knockdown (KD) fibroblasts. The cell motility deficit in both patient-derived cells and ACC1-KD were attenuated by palmitate. CONCLUSION: We report an individual with biallelic mutations in ACACA, presenting global development delay. In vitro studies revealed a disruption of lipid homeostasis in patient-derived lymphocytes, further inducing the deficit of cell motility capacity and that the deficiency could be partly attenuated by palmitate.

4.
Cell Rep ; 35(2): 108963, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852835

ABSTRACT

The assembly pathways of mitochondrial respirasome (supercomplex I+III2+IV) are not fully understood. Here, we show that an early sub-complex I assembly, rather than holo-complex I, is sufficient to initiate mitochondrial respirasome assembly. We find that a distal part of the membrane arm of complex I (PD-a module) is a scaffold for the incorporation of complexes III and IV to form a respirasome subcomplex. Depletion of PD-a, rather than other complex I modules, decreases the steady-state levels of complexes III and IV. Both HEK293T cells lacking TIMMDC1 and patient-derived cells with disease-causing mutations in TIMMDC1 showed accumulation of this respirasome subcomplex. This suggests that TIMMDC1, previously known as a complex-I assembly factor, may function as a respirasome assembly factor. Collectively, we provide a detailed, cooperative assembly model in which most complex-I subunits are added to the respirasome subcomplex in the lateral stages of respirasome assembly.


Subject(s)
Electron Transport Complex III/genetics , Electron Transport Complex IV/genetics , Electron Transport Complex I/genetics , Mitochondria/genetics , Mitochondrial Precursor Protein Import Complex Proteins/genetics , Animals , B-Lymphocytes , Cell Line, Transformed , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Electron Transport Complex III/antagonists & inhibitors , Electron Transport Complex III/metabolism , Electron Transport Complex IV/antagonists & inhibitors , Electron Transport Complex IV/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Precursor Protein Import Complex Proteins/deficiency , Morpholinos/genetics , Morpholinos/metabolism , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Muscle Hypotonia/pathology , Oxidative Phosphorylation , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...