Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(19): 30815-30831, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710616

ABSTRACT

Metasurfaces are ultra-thin artificial structures capable of flexibly manipulating electromagnetic (EM) waves. Among various applications, phase modulation of electromagnetic (EM) waves using metasurfaces holds great significance. The Pancharatnam-Berry (P-B) metasurfaces provides a complete 2π phase modulation by simply rotating the meta-atom. However, the fixed lattice in rotation employed by traditional P-B metasurfaces often results in unstable amplitude and imprecise P-B phase, leading to performance degradation. In this work, we demonstrate transmissive P-B metasurfaces with stable amplitude and precise phase modulation. To ensure stable amplitude and precise P-B phase, we adopt a dartboard discretization configuration with a hexagonal lattice for the meta-atom design. By applying topology optimization to the encoding sequence formed by surface pixels and dimensions, we significantly enhancing the high transmissive bandwidth of the optimized meta-atom. Furthermore, the optimized meta-atom exhibits a stable amplitude and precise P-B phase for each rotation angle. As proof-of-concept demonstrations, two metasurfaces for single and multiplexed vortex beams generating are designed utilizing the optimized meta-atom. Both the simulated and measured results indicate high mode purity of generated vortex beams. The design method can also be readily extended to other high performance metasurfaces with stable amplitude and precise phase manipulations, which can enhance the efficiency and capacity of metasurface-assisted holographic imaging and 6 G wireless communication systems.

2.
Opt Express ; 31(17): 28444-28458, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710898

ABSTRACT

In this paper, a hybrid mechanism metasurface (HMM) employing 1-bit random coding is proposed to achieve polarization-insensitive and dual-wideband monostatic/bistatic radar cross section (RCS) reduction under a wide range of incident angles. The anisotropic unit cell is designed by the combination of the multi-objective particle swarm optimization (MOPSO) algorithm and Python-CST joint simulation, which facilitates the rapid acquisition of the desired unit cell with excellent dual-band absorption conversion capability. The unit cell and its mirrored version are used to represent the units "0" and "1", respectively. In addition, the array distribution with random coding of the units "0" and "1" is optimized under different incident angles, polarizations and frequencies, which enables better diffusion-like scattering. Simulation results demonstrate that the proposed coding HMM can effectively reduce the monostatic/bistatic RCS by over 10 dB within the dual-band frequency ranges of 2.07-3.02 THz and 3.78-4.71 THz. Furthermore, the specular and bistatic RCS reduction performances remain stable at oblique incident angles up to 45° for both TE and TM polarizations.

3.
IEEE Trans Nanobioscience ; 17(4): 387-393, 2018 10.
Article in English | MEDLINE | ID: mdl-30281469

ABSTRACT

The dielectric spectroscopy (DS) measurement is an attractive noninvasive method to reveal the intrinsic information of biological materials and cell cultures. However, the presence of a double layer due to electrode polarization within the lower RF and microwave range significantly affects the accurate analysis of dielectric properties of ionic liquids. In this paper, we measure the broadband DS of five saline solutions with a microfluidic coplanar waveguide (CPW) transmission line sensor across the frequency range from 40 kHz to 110 GHz. Derived from a parallel-plate structure that is transformed from the quasi-TEM CPW sensor through a conformal mapping technique, a broadband spectroscopy modeling method is proposed, where a Cole-Cole function or a constant phase element formula is used depending on the ionic concentrations and the measurement window. Validation analysis on the five saline solutions demonstrates the capability of the modeling method in separating relaxation properties of the bulk sample from the double-layer effects.


Subject(s)
Dielectric Spectroscopy , Ionic Liquids/analysis , Ionic Liquids/chemistry , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...