Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1283008, 2024.
Article in English | MEDLINE | ID: mdl-38357203

ABSTRACT

Lung cancer treatment has transitioned fully into the era of immunotherapy, yielding substantial improvements in survival rate for patients with advanced non-small cell lung cancer (NSCLC). In this report, we present a case featuring a rare epidermal growth factor receptor (EGFR) mutation accompanied by high programmed death-ligand 1 (PD-L1) expression, demonstrating remarkable therapeutic efficacy through a combination of immunotherapy and chemotherapy. A 77-year-old male with no family history of cancer suffered from upper abdominal pain for more than half months in August 2020 and was diagnosed with stage IV (cT3N3M1c) lung squamous cell carcinoma (LUSC) harboring both a rare EGFR p.G719C mutation and high expression of PD-L1 (tumor proportion score [TPS] = 90%). Treatment with the second-generation targeted therapy drug Afatinib was initiated on September 25, 2020. However, resistance ensued after 1.5 months of treatment. On November 17, 2020, immunotherapy was combined with chemotherapy (Sintilimab + Albumin-bound paclitaxel + Cisplatin), and a CT scan conducted three months later revealed significant tumor regression with a favorable therapeutic effect. Subsequently, the patient received one year of maintenance therapy with Sintilimab, with follow-up CT scans demonstrating subtle tumor shrinkage (stable disease). This case provides evidence for the feasibility and efficacy of immunotherapy combined with chemotherapy in the treatment of EGFR-mutated and PD-L1 highly expressed LUSC.

2.
Article in English | MEDLINE | ID: mdl-34616481

ABSTRACT

BACKGROUND: As a traditional Chinese medicine prescription, Xiao-Xu-Ming decoction (XXMD) could reduce the incidence of lung infection of patients with cerebral infarction. Nonetheless, the therapeutic mechanisms of XXMD in acute lung injury (ALI) remain to be elucidated. Our study was aimed to assess the effects of XXMD protects against ALI. METHODS: ALI model was induced by intraperitoneal injection of lipopolysaccharide (LPS) in vivo. In vitro, human pulmonary alveolar epithelial cells (HPAEpiC) were treated with XXMD and were followed by LPS treatment. The levels of ZO-1, CLDN4, NLRP3, and caspase 1 were detected by Western blot, and the content of IL-1 and IL-18 was determined by ELISA. Transepithelial electrical resistance was used to detect the cell permeability. The reactive oxygen species (ROS) levels within the cells were evaluated by flow cytometry. RESULTS: Our results showed that XXMD attenuated LPS-induced oxidative stress, barrier dysfunction, and the activation of NLRP3 inflammasome in vitro, as evidenced by enhanced ROS production, TEER levels, expression of NLRP3 and caspase 1 (p20) and release of IL-1ß and IL-18, and weakened cell permeability. In addition, XXMD could counteract the effects of NLRP3 overexpression on HPAEpiC and vice versa. XXMD treatment also ameliorated the degree of neutrophil infiltration, barrier dysfunction, and the activation of NLRP3 in LPS-induced ALI lung tissues in vivo. CONCLUSION: The findings showed that XXMD could alleviate LPS-induced ALI injury and inhibit inflammation and suppress ROS/NLRP3 signaling pathway, which were involved in these protective effects.

3.
Neurochem Int ; 125: 136-143, 2019 05.
Article in English | MEDLINE | ID: mdl-30797968

ABSTRACT

Previous investigations have implicated mitochondrial dysfunction characterized by Complex I deficiency in the death of dopaminergic neurons in Parkinson's disease (PD). To date, there are no efficient therapeutic approaches to rescue mitochondrial respiratory impairment or prevent neurodegeneration in PD. The beneficial effects of echinacoside (ECH) on neurodegeneration have been reported in both in vivo and in vitro studies, yet the mechanisms underlying remain elusive and little has been investigated concerning the influences of ECH on mitochondrial respiratory impairment. Here, we compared the protection of ECH on cell injury and mitochondrial dysfunction induced by various inhibitors of Complex I-IV using human neuroblastoma SH-SY5Y cell line. We found that ECH selectively attenuates cell injury, reverses mitochondrial depolarization and bioenergetic failure caused by Complex I inhibitors, whereas it has little protection against Complex II-IV inhibitors. Further investigation demonstrated that ECH enhances Complex II activity and mitochondrial respiration in the cells treated with Complex I inhibitors. This suggests that ECH selectively rescues Complex I inhibition-induced mitochondrial respiratory impairment though elevating Complex II activity, and further confirms that ECH might have a promising potential in PD treatment.


Subject(s)
Cell Respiration/drug effects , Electron Transport Complex II/metabolism , Electron Transport Complex I/metabolism , Glycosides/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Cell Respiration/physiology , Humans , Membrane Potential, Mitochondrial/physiology , Mitochondria/drug effects
4.
Article in English | MEDLINE | ID: mdl-30498516

ABSTRACT

OBJECTS: Sheng-Di-Da-Huang Decoction was used as an effective hemostatic agent in ancient China. However, its therapeutic mechanism is still not clear. Inflammatory injury plays a critical role in ICH-induced secondary brain injury. After hemolysis, hematoma components are released, inducing microglial activation via TLR4, which initiates the activation of transcription factors (such as NF-κB) to regulate expression of proinflammatory cytokine genes. This study aimed to verify the anti-inflammatory effects of Sheng-Di-Da-Huang Decoction on ICH rats. MATERIALS AND METHODS: Intracerebral hemorrhage was induced by injection of bacterial collagenase (0.2 U) in rats. Neurological deficits, brain water content, Evans blue extravasation, expression of TLR4, NF-κB, Iba-1 positive cells (activated microglia), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) were examined 1, 3, 7, and 14 days after collagenase injection. MR images were also studied. RESULTS: Sheng-Di-Da-Huang Decoction remarkably improved neurological function, reduced brain water content as well as Evans blue extravasation, downregulated expression of TLR4, NF-κB, TNF-α, and IL-1ß, and inhibited microglial activation. CONCLUSIONS: Sheng-Di-Da-Huang Decoction reduced inflammation reaction after ICH through inhibited inflammation expressed in microglia.

5.
J Integr Med ; 16(4): 290-296, 2018 07.
Article in English | MEDLINE | ID: mdl-29866613

ABSTRACT

OBJECTIVE: The main objective of this study was to preliminarily determine the optimum formulation of a Chinese herbal formula that may have neuroprotective effects against rotenone-induced Parkinson's disease (PD). METHODS: Seven recipes were made from Dihuang (DH, Rehmannia glutinosa Libosch), Roucongrong (RCR, Cistanche deserticola Y.C.Ma), Niuxi (NX, Achyranthes bidentata Bl.) and Shanzhuyu (SZY, Cornus officinalis Sieb. et Zucc) in different proportions, according to the principles of uniform design (4 factors 7 levels). Tyrosine hydroxylase (TH)-positive neurons in substantia nigra pars compacta (SNpc) were detected by immunohistochemistry and rotenone-exposure days necessary to induce PD symptoms were recorded. To probe one likely mechanism of the formulas, echinacoside (ECH) concentrations of all seven recipes were determined by high-performance liquid chromatography and related to number of TH-positive neurons. RESULTS: The data showed that recipe 4 (DH:RCR:SZY:NX = 1:1:1:1) and recipe 7 (DH:RCR:SZY:NX = 7:5:3:1) partially reversed rotenone-induced death of TH-positive neurons in the SNpc and significantly increased rotenone-exposed days compared with model group. Pharmacologically, there was not a strong correlation between ECH concentration and TH-positive neurons. CONCLUSION: The investigated formulations of Chinese herbs had neuroprotective effects against PD models, and the neuroprotective effects were weakly related to the proportion of key herbs. However the neuroprotective effects of the formula may not result from a single active constituent.


Subject(s)
Drugs, Chinese Herbal/administration & dosage , Neuroprotective Agents/administration & dosage , Parkinson Disease/drug therapy , Rotenone/adverse effects , Animals , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Humans , Male , Neuroprotective Agents/chemistry , Parkinson Disease/etiology , Plants, Medicinal/chemistry , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...