Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Antimicrob Agents ; 63(1): 107039, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981073

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in the coronavirus disease 2019 (COVID-19) pandemic. Given the advent of subvariants, there is an urgent need to develop novel drugs. The aim of this study was to find SARS-CoV-2 inhibitors from Scutellaria baicalensis Georgi targeting the proteases 3CLpro and PLpro. After screening 25 flavonoids, chrysin 7-O-ß-D-glucuronide was found to be a potent inhibitor of SARS-CoV-2 on Vero E6 cells, with half-maximal effective concentration of 8.72 µM. Surface plasmon resonance assay, site-directed mutagenesis and enzymatic activity measurements indicated that chrysin-7-O-ß-D-glucuronide inhibits SARS-CoV-2 by binding to H41 of 3CLpro, and K157 and E167 of PLpro. Hydrogen-deuterium exchange mass spectrometry analysis showed that chrysin-7-O-ß-D-glucuronide changes the conformation of PLpro. Finally, chrysin 7-O-ß-D-glucuronide was shown to have anti-inflammatory activity, mainly due to reduction of the levels of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Glucuronides/pharmacology , Cysteine Endopeptidases/chemistry , Protease Inhibitors/pharmacology , Flavonoids/pharmacology , Flavonoids/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Molecular Docking Simulation
2.
Org Biomol Chem ; 21(42): 8467-8470, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37842833

ABSTRACT

The bacterial glycosyltransferase YjiC1 was used to glycosylate triterpenoids from the medicinal fungus Antrodia camphorata. Eleven new compounds were obtained from enzymatic reactions. Glucosylation could increase the inhibitory activities against COX-2, and improve the anti-inflammatory activities of Antrodia ergostanes on acute lung injury mice, especially (25R)-antcin C 7-O-ß-D-glucoside.


Subject(s)
Antrodia , Polyporales , Triterpenes , Mice , Animals , Triterpenes/pharmacology
3.
J Pharm Anal ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37363744

ABSTRACT

Currently, human health due to corona virus disease 2019 (COVID-19) pandemic has been seriously threatened. The coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19. However, the efficacy is compromised by the SARS-CoV-2 evolvement and mutation. Here we report the SARS-CoV-2 S protein receptor-binding domain (RBD) inhibitor licorice-saponin A3 (A3) could widely inhibit RBD of SARS-CoV-2 variants, including Beta, Delta, and Omicron BA.1, XBB and BQ1.1. Furthermore, A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells, with EC50 of 1.016 µM. The mechanism was related with binding with Y453 of RBD determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis combined with quantum mechanics/molecular mechanics (QM/MM) simulations. Interestingly, phosphoproteomics analysis and multi fluorescent immunohistochemistry (mIHC) respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 MAPK pathways and rebalancing the corresponding immune dysregulation. This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.

4.
Plant Biotechnol J ; 21(4): 698-710, 2023 04.
Article in English | MEDLINE | ID: mdl-36529909

ABSTRACT

Although plant secondary metabolites are important source of new drugs, obtaining these compounds is challenging due to their high structural diversity and low abundance. The roots of Astragalus membranaceus are a popular herbal medicine worldwide. It contains a series of cycloartane-type saponins (astragalosides) as hepatoprotective and antivirus components. However, astragalosides exhibit complex sugar substitution patterns which hindered their purification and bioactivity investigation. In this work, glycosyltransferases (GT) from A. membranaceus were studied to synthesize structurally diverse astragalosides. Three new GTs, AmGT1/5 and AmGT9, were characterized as 3-O-glycosyltransferase and 25-O-glycosyltransferase of cycloastragenol respectively. AmGT1G146V/I variants were obtained as specific 3-O-xylosyltransferases by sequence alignment, molecular modelling and site-directed mutagenesis. A combinatorial synthesis system was established using AmGT1/5/9, AmGT1G146V/S and the reported AmGT8 and AmGT8A394F . The system allowed the synthesis of 13 astragalosides in Astragalus root with conversion rates from 22.6% to 98.7%, covering most of the sugar-substitution patterns for astragalosides. In addition, AmGT1 exhibited remarkable sugar donor promiscuity to use 10 different donors, and was used to synthesize three novel astragalosides and ginsenosides. Glycosylation remarkably improved the hepatoprotective and SARS-CoV-2 inhibition activities for triterpenoids. This is one of the first attempts to produce a series of herbal constituents via combinatorial synthesis. The results provided new biocatalytic tools for saponin biosynthesis.


Subject(s)
COVID-19 , Plants, Medicinal , Saponins , Triterpenes , Astragalus propinquus/chemistry , Astragalus propinquus/genetics , Astragalus propinquus/metabolism , Saponins/chemistry , Saponins/metabolism , Glycosyltransferases/genetics , SARS-CoV-2 , Triterpenes/metabolism , Protein Engineering , Sugars/metabolism
5.
Chem Commun (Camb) ; 58(88): 12337-12340, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36259981

ABSTRACT

We report a C-glycosyltransferase PlCGT from Pueraria lobata. PlCGT exhibits efficient C-glycosylation activities toward two types of substrates (isoflavones and phloroglucinol derivatives). Homology modelling reveals that a narrow hydrophobic pocket is responsible for its substrate selectivity. An unusual Asn16-Asp124 dyad in the pocket may mediate the SN2-like mechanism in C-glycosylation.


Subject(s)
Isoflavones , Pueraria , Pueraria/chemistry , Glycosyltransferases , Plant Roots/chemistry , Isoflavones/chemistry
6.
Acta Pharm Sin B ; 12(11): 4154-4164, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35968270

ABSTRACT

It is an urgent demand worldwide to control the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro) are key targets to discover SARS-CoV-2 inhibitors. After screening 12 Chinese herbal medicines and 125 compounds from licorice, we found that a popular natural product schaftoside inhibited 3CLpro and PLpro with IC50 values of 1.73 ± 0.22 and 3.91 ± 0.19 µmol/L, respectively, and inhibited SARS-CoV-2 virus in Vero E6 cells with EC50 of 11.83 ± 3.23 µmol/L. Hydrogen-deuterium exchange mass spectrometry analysis, quantum mechanics/molecular mechanics calculations, together with site-directed mutagenesis indicated the antiviral activities of schaftoside were related with non-covalent interactions with H41, G143 and R188 of 3CLpro, and K157, E167 and A246 of PLpro. Moreover, proteomics analysis and cytokine assay revealed that schaftoside also regulated immune response and inflammation of the host cells. The anti-inflammatory activities of schaftoside were confirmed on lipopolysaccharide-induced acute lung injury mice. Schaftoside showed good safety and pharmacokinetic property, and could be a promising drug candidate for the prevention and treatment of COVID-19.

7.
J Adv Res ; 36: 201-210, 2022 02.
Article in English | MEDLINE | ID: mdl-35116174

ABSTRACT

Introduction: The COVID-19 global epidemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) is a great public health emergency. Discovering antiviral drug candidates is urgent for the prevention and treatment of COVID-19. Objectives: This work aims to discover natural SARS-CoV-2 inhibitors from the traditional Chinese herbal medicine licorice. Methods: We screened 125 small molecules from Glycyrrhiza uralensis Fisch. (licorice, Gan-Cao) by virtual ligand screening targeting the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. Potential hit compounds were further evaluated by ELISA, SPR, luciferase assay, antiviral assay and pharmacokinetic study. Results: The triterpenoids licorice-saponin A3 (A3) and glycyrrhetinic acid (GA) could potently inhibit SARS-CoV-2 infection, with EC50 of 75 nM and 3.17 µM, respectively. Moreover, we reveal that A3 mainly targets the nsp7 protein, and GA binds to the spike protein RBD of SARS-CoV-2. Conclusion: In this work, we found GA and A3 from licorice potently inhibit SARS-CoV-2 infection by affecting entry and replication of the virus. Our findings indicate that these triterpenoids may contribute to the clinical efficacy of licorice for COVID-19 and could be promising candidates for antiviral drug development.


Subject(s)
COVID-19 , Glycyrrhiza , Triterpenes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Triterpenes/pharmacology
8.
Angew Chem Int Ed Engl ; 61(8): e202113587, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34894044

ABSTRACT

Engineering the function of triterpene glucosyltransferases (GTs) is challenging due to the large size of the sugar acceptors. In this work, we identified a multifunctional glycosyltransferase AmGT8 catalyzing triterpene 3-/6-/2'-O-glycosylation from the medicinal plant Astragalus membranaceus. To engineer its regiospecificity, a small mutant library was built based on semi-rational design. Variants A394F, A394D, and T131V were found to catalyze specific 6-O, 3-O, and 2'-O glycosylation, respectively. The origin of regioselectivity of AmGT8 and its A394F variant was studied by molecular dynamics and hydrogen deuterium exchange mass spectrometry. Residue 394 is highly conserved as A/G and is critical for the regiospecificity of the C- and O-GTs TcCGT1 and GuGT10/14. Finally, astragalosides III and IV were synthesized by mutants A394F, T131V and P192E. This work reports biocatalysts for saponin synthesis and gives new insights into protein engineering of regioselectivity in plant GTs.


Subject(s)
Glycosyltransferases/metabolism , Protein Engineering , Saponins/biosynthesis , Triterpenes/metabolism , Astragalus propinquus/enzymology , Biocatalysis , Glycosyltransferases/chemistry , Protein Conformation , Saponins/chemistry , Stereoisomerism , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...