Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(3): 030401, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307063

ABSTRACT

How long does it take to entangle two distant qubits in a quantum circuit evolved by generic unitary dynamics? We show that if the time evolution is followed by measurements of all but two infinitely separated test qubits, then the entanglement between them can undergo a phase transition and become nonzero at a finite critical time t_{c}. The fidelity of teleporting a quantum state from an input qubit to an infinitely distant output qubit shows the same critical onset. Specifically, these finite-time transitions occur in short-range interacting two-dimensional random unitary circuits and in sufficiently long-range interacting one-dimensional circuits. The phase transition is understood by mapping the random continuous-time evolution to a finite-temperature thermal state of an effective spin Hamiltonian, where the inverse temperature equals the evolution time in the circuit. In this framework, the entanglement between two distant qubits at times t>t_{c} corresponds to the emergence of long-range ferromagnetic spin correlations below the critical temperature. We verify these predictions using numerical simulation of Clifford circuits and propose potential realizations in existing platforms for quantum simulation.

2.
Phys Rev Lett ; 129(8): 080501, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36053700

ABSTRACT

Generic many-body systems coupled to an environment lose their quantum entanglement due to decoherence and evolve to a mixed state with only classical correlations. Here, we show that measurements can stabilize quantum entanglement within open quantum systems. Specifically, in random unitary circuits with dephasing at the boundary, we find both numerically and analytically that projective measurements performed at a small nonvanishing rate result in a steady state with an L^{1/3} power-law scaling entanglement negativity within the system. Using an analytical mapping to a statistical mechanics model of directed polymers in a random environment, we show that the power-law negativity scaling can be understood as Kardar-Parisi-Zhang fluctuations due to the random measurement locations. Further increasing the measurement rate leads to a phase transition into an area-law negativity phase, which is of the same universality as the entanglement transition in monitored random circuits without decoherence.

3.
Phys Rev Lett ; 128(1): 010604, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35061465

ABSTRACT

The competition between scrambling unitary evolution and projective measurements leads to a phase transition in the dynamics of quantum entanglement. Here, we demonstrate that the nature of this transition is fundamentally altered by the presence of long-range, power-law interactions. For sufficiently weak power laws, the measurement-induced transition is described by conformal field theory, analogous to short-range-interacting hybrid circuits. However, beyond a critical power law, we demonstrate that long-range interactions give rise to a continuum of nonconformal universality classes, with continuously varying critical exponents. We numerically determine the phase diagram for a one-dimensional, long-range-interacting hybrid circuit model as a function of the power-law exponent and the measurement rate. Finally, by using an analytic mapping to a long-range quantum Ising model, we provide a theoretical understanding for the critical power law.

4.
Phys Rev Lett ; 125(3): 030505, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32745425

ABSTRACT

We analyze the dynamics of entanglement entropy in a generic quantum many-body open system from the perspective of quantum information and error corrections. We introduce a random unitary circuit model with intermittent projective measurements, in which the degree of information scrambling by the unitary and the rate of projective measurements are independently controlled. This model displays two stable phases, characterized by the volume-law and area-law scaling entanglement entropy in steady states. The transition between the two phases is understood from the point of view of quantum error correction: the chaotic unitary evolution protects quantum information from projective measurements that act as errors. A phase transition occurs when the rate of errors exceeds a threshold that depends on the degree of information scrambling. We confirm these results using numerical simulations and obtain the phase diagram of our model. Our work shows that information scrambling plays a crucial role in understanding the dynamics of entanglement in an open quantum system and relates the entanglement phase transition to changes in quantum channel capacity.

SELECTION OF CITATIONS
SEARCH DETAIL
...