Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vasc Res ; : 1-15, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749406

ABSTRACT

INTRODUCTION: Acquisition of a deeper understanding of microvascular function across physiological and pathological conditions can be complicated by poor accessibility of the vascular networks and the necessary sophistication or intrusiveness of the equipment needed to acquire meaningful data. Laser Doppler fluximetry (LDF) provides a mechanism wherein investigators can readily acquire large amounts of data with minor inconvenience for the subject. However, beyond fairly basic analyses of erythrocyte perfusion (fluximetry) data within the cutaneous microcirculation (i.e., perfusion at rest and following imposed challenges), a deeper understanding of microvascular perfusion requires a more sophisticated approach that can be challenging for many investigators. METHODS: This manuscript provides investigators with clear guidance for data acquisition from human subjects for full analysis of fluximetry data, including levels of perfusion, single- and multiscale Lempel-Ziv complexity (LZC) and sample entropy (SampEn), and wavelet-based analyses for the major physiological components of the signal. Representative data and responses are presented from a recruited cohort of healthy volunteers, and computer codes for full data analysis (MATLAB) are provided to facilitate efforts by interested investigators. CONCLUSION: It is anticipated that these materials can reduce the challenge to investigators integrating these approaches into their research programs and facilitate translational research in cardiovascular science.

2.
J Appl Physiol (1985) ; 136(6): 1303-1321, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38601995

ABSTRACT

Blood flow regulation within the microvasculature reflects a complex interaction of regulatory mechanisms and varies spatially and temporally according to conditions such as metabolism, growth, injury, and disease. Understanding the role of microvascular flow distributions across conditions is of interest to investigators spanning multiple disciplines; however, data collection within networks can be labor-intensive and challenging due to limited resolution. To overcome these experimental challenges, computational network models that can accurately simulate vascular behavior are highly beneficial. Constrained constructive optimization (CCO) is a commonly used algorithm for vascular simulation, particularly well known for its adaptability toward vascular modeling across tissues. The present work demonstrates an implementation of CCO aimed to simulate a branching arteriolar microvasculature in healthy skeletal muscle, validated against literature including comprehensive rat gluteus maximus vasculature datasets, and reviews a list of user-specified adjustable model parameters to understand how their variability affects the simulated networks. Network geometric properties, including mean element diameters, lengths, and numbers of bifurcations per order, Horton's law ratios, and fractal dimension, demonstrate good validation once model parameters are adjusted to experimental data. This model successfully demonstrates hemodynamic properties such as Murray's law and the network Fahraeus effect. Application of centrifugal and Strahler ordering schemes results in divergent descriptions of identical simulated networks. This work introduces a novel CCO-based model focused on generating branching skeletal muscle microvascular arteriolar networks based on adjustable model parameters, thus making it a valuable tool for investigations into skeletal muscle microvascular structure and tissue perfusion.NEW & NOTEWORTHY The present work introduces a CCO-based algorithm for generating branching arteriolar networks, with adjustable model parameters to enable modeling in varying skeletal muscle tissues. The geometric and hemodynamic parameters of the generated networks have been comprehensively validated using experimental data collected previously in-house and from literature. This is one of few validated CCO-based models to specialize in skeletal muscle microvasculature and acts as a beneficial tool for investigating the microvasculature for hypothesis testing and validation.


Subject(s)
Algorithms , Muscle, Skeletal , Animals , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Rats , Arterioles/physiology , Models, Cardiovascular , Computer Simulation , Microcirculation/physiology , Hemodynamics/physiology , Microvessels/physiology
3.
J Appl Physiol (1985) ; 136(1): 122-140, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37969083

ABSTRACT

Previous studies have suggested that the loss of microvessel density in the peripheral circulation with evolving metabolic disease severity represents a significant contributor to impaired skeletal muscle oxygenation and fatigue-resistance. Based on this and our recent work, we hypothesized that cerebral microvascular rarefaction was initiated from the increased prooxidant and proinflammatory environment with metabolic disease and is predictive of the severity of the emergence of depressive symptoms in obese Zucker rats (OZRs). In male OZR, cerebrovascular rarefaction followed the emergence of elevated oxidant and inflammatory environments characterized by increased vascular production of thromboxane A2 (TxA2). The subsequent emergence of depressive symptoms in OZR was associated with the timing and severity of the rarefaction. Chronic intervention with antioxidant (TEMPOL) or anti-inflammation (pentoxifylline) therapy blunted the severity of rarefaction and depressive symptoms, although the effectiveness was limited. Blockade of TxA2 production (dazmegrel) or action (SQ-29548) resulted in a stronger therapeutic effect, suggesting that vascular production and action represent a significant contributor to rarefaction and the emergence of depressive symptoms with chronic metabolic disease (although other pathways clearly contribute as well). A de novo biosimulation of cerebrovascular oxygenation in the face of progressive rarefaction demonstrates the increased probability of generating hypoxic regions within the microvascular networks, which could contribute to impaired neuronal metabolism and the emergence of depressive symptoms. The results of the present study also implicate the potential importance of aggressive prodromic intervention in reducing the severity of chronic complications arising from metabolic disease.NEW & NOTEWORTHY With clinical studies linking vascular disease risk to depressive symptom emergence, we used obese Zucker rats, a model of chronic metabolic disease, to identify potential mechanistic links between these two negative outcomes. Depressive symptom severity correlated with the extent of cerebrovascular rarefaction, after increased vascular oxidant stress/inflammation and TxA2 production. Anti-TxA2 interventions prevasculopathy blunted rarefaction and depressive symptoms, while biosimulation indicated that cerebrovascular rarefaction increased hypoxia within capillary networks as a potential contributing mechanism.


Subject(s)
Metabolic Diseases , Metabolic Syndrome , Microvascular Rarefaction , Animals , Rats , Male , Thromboxanes , Depression , Rats, Zucker , Obesity/metabolism , Oxidants
4.
J Vasc Res ; 60(5-6): 245-272, 2023.
Article in English | MEDLINE | ID: mdl-37769627

ABSTRACT

INTRODUCTION: Physiological system complexity represents an imposing challenge to gaining insight into how arteriolar behavior emerges. Further, mechanistic complexity in arteriolar tone regulation requires that a systematic determination of how these processes interact to alter vascular diameter be undertaken. METHODS: The present study evaluated the reactivity of ex vivo proximal and in situ distal resistance arterioles in skeletal muscle with challenges across the full range of multiple physiologically relevant stimuli and determined the stability of responses over progressive alterations to each other parameter. The five parameters chosen for examination were (1) metabolism (adenosine concentration), (2) adrenergic activation (norepinephrine concentration), (3) myogenic activation (intravascular pressure), (4) oxygen (superfusate PO2), and (5) wall shear rate (altered intraluminal flow). Vasomotor tone of both arteriole groups following challenge with individual parameters was determined; subsequently, responses were determined following all two- and three-parameter combinations to gain deeper insight into how stimuli integrate to change arteriolar tone. A hierarchical ranking of stimulus significance for establishing arteriolar tone was performed using mathematical and statistical analyses in conjunction with machine learning methods. RESULTS: Results were consistent across methods and indicated that metabolic and adrenergic influences were most robust and stable across all conditions. While the other parameters individually impact arteriolar tone, their impact can be readily overridden by the two dominant contributors. CONCLUSION: These data suggest that mechanisms regulating arteriolar tone are strongly affected by acute changes to the local environment and that ongoing investigation into how microvessels integrate stimuli regulating tone will provide a more thorough understanding of arteriolar behavior emergence across physiological and pathological states.


Subject(s)
Adenosine , Muscle, Skeletal , Arterioles/physiology , Muscle, Skeletal/blood supply , Norepinephrine , Adrenergic Agents
5.
J Vasc Res ; 60(1): 12-68, 2023.
Article in English | MEDLINE | ID: mdl-36843014

ABSTRACT

Research involving human subjects in ambulatory settings is a critical link in the chain comprising translational research, spanning preclinical research to human subject and patient cohort studies. There are presently a wide array of techniques and approaches available to investigators wishing to study blood flow, perfusion, and vascular structure and function in human subjects. In this multi-sectioned review, we discuss capillaroscopy, carotid intima-media thickness, flow-mediated dilation, laser Doppler flowmetry, near-infrared spectroscopy, peripheral arterial tonometry, pulse wave velocity, retinal fundus imaging, and vascular plethysmography. Each section contains a general overview and the physical basis of the technique followed by a discussion of the procedures involved and the necessary equipment, with attention paid to specific requirements or limitations. Subsequently, we detail which aspects of vascular function can be studied with a given technique, the analytical approach to the collected data, and the appropriate application and limitation(s) to the interpretation of the data collected. Finally, a modified scoping review provides a summary of how each assessment technique has been applied in previous studies. It is anticipated that this review will provide an efficient source of information and insight for preclinical investigators seeking to add translational aspects to their research programs.


Subject(s)
Carotid Intima-Media Thickness , Pulse Wave Analysis , Humans , Pulse Wave Analysis/methods , Translational Research, Biomedical , Blood Flow Velocity/physiology , Perfusion
SELECTION OF CITATIONS
SEARCH DETAIL
...