Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860545

ABSTRACT

BACKGROUND: Morden advanced analytical tools offer valuable information into the understanding of molecular mechanism of traditional food processing. Chopping temperature is well-known to affect the surimi gel quality of silver carp, but the detailed molecular mechanism is not very clear. In this study, a gel-based proteomics was performed on the extracted surimi proteins under different chopping temperatures (0, 5, 10, and 25 °C) along with other physicochemical characterization of surimi proteins and gels. RESULTS: With increased chopping temperature, protein extractability (in 3% sodium chloride) generally decreased, while the extracted protein generally exhibited larger surface hydrophobicity, reduced intrinsic fluorescence intensity, lower sulfhydryl content. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profile of extracted protein showed a clear difference at 25 °C when compared with the other three temperatures, and more protein fragmentation occurred. Proteomic analysis of selected bands indicated that major myofibrillar proteins react differently with chopping temperatures, especially at 25 °C. The selected bands contained a variety of other proteins or their fragments, including adenosine triphosphate (ATP) synthase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate isomerase, heat shock protein, parvalbumin, collagen, and so forth. For the surimi gel, water-holding capacity and gel strength generally decreased with increased chopping temperature. CONCLUSION: Our results suggested that chopping at 0-10 °C is acceptable for the production of silver carp surimi in terms of gel strength and water-holding capacity. However, a chopping temperature near 0 °C led to less protein oxidation and denaturation. The inferior gel quality at 25 °C is linked to a decreased concentration of extracted protein and degradation of major myofibrillar protein, the latter is likely crosslinked with sarcoplasmic proteins. © 2024 Society of Chemical Industry.

2.
Food Res Int ; 187: 114357, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763641

ABSTRACT

The oxidation of fish lipids and proteins is interconnected. The LOX (lipoxygenase)-catalyzed LA (linoleic acid) oxidation system on MPs (myofibrillar proteins) was established in vitro, to investigate the impact of lipoxidation on the physicochemical properties of fish MPs. By detecting HNE (4-hydroxy-2-nonenal) concentration during LA oxidation, the HNE treatment system was established to investigate the role of HNE in this process. In addition, the site specificity of modification on MPs was detected utilizing LC-MS/MS. Both treatments could induce sidechain modification, increase particle size, and cause loss of nutritional value through the reduction in amino acid content of MPs. The HNE group is more likely to alter the MPs' surface hydrophobicity compared to the LA group. By increasing the exposure of modification sites in MPs, the HNE group has more types and number of modifications compared to the LA group. LA group mainly induced the modification of single oxygen addition on MPs instead, which accounted for over 50 % of all modifications. The LA group induced a more pronounced reduction in the solubility of MPs as compared to the HNE group. In conclusion, HNE binding had a high susceptibility to Lys on MPs. Protein aggregation, peptide chain fragmentation, and decreased solubility occurred in the LA group mainly induced by peroxide generated during lipid oxidation or the unreacted LA instead of HNE. This study fills in the mechanism of lipoxidation on protein oxidation in fish and sheds light on the HNE modification sites of MPs, paving the way for the development of oxidation control technology.


Subject(s)
Aldehydes , Linoleic Acid , Oxidation-Reduction , Tandem Mass Spectrometry , Aldehydes/metabolism , Animals , Linoleic Acid/chemistry , Linoleic Acid/metabolism , Chromatography, Liquid/methods , Fish Proteins/metabolism , Muscle Proteins/metabolism , Fishes , Hydrophobic and Hydrophilic Interactions , Lipoxygenase/metabolism , Liquid Chromatography-Mass Spectrometry
3.
Food Chem ; 450: 139269, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38613961

ABSTRACT

The purpose of this study was to determine the effect of pre-rigor salting on the quality characteristics of surimi gels prepared from snakehead fish muscle. Pre-rigor and post-rigor muscle were mixed with 0.3% or 3% NaCl (w/w) and made into surimi gels, respectively. Results showed that pre-rigor muscle had a higher content of ATP, longer sarcomere, higher pH and greater protein solubility. Metabolic profile suggested that pre-rigor muscle had higher content (a 28-fold increase) of antioxidants such as butyryl-l-carnitine. Transmission electron microscopy showed more damage of mitochondria in post-rigor muscle. Surimi paste from pre-rigor meat chopped with 3% NaCl generally showed greater radical scavenging ability and had higher content of free sulfhydryl. Surimi gel made from pre-rigor muscle salted with 3% NaCl showed a larger gel strength (3.18 kg*mm vs. 2.22 kg*mm) and better water-holding (86% vs. 80%) than that of post-rigor group. Based on these findings, we hypothesized that: In addition to other factors such as pH, degree of denaturation, etc., less protein oxidation in pre-rigor salted surimi also contributes to the improved gel properties.


Subject(s)
Fish Products , Fish Proteins , Gels , Oxidation-Reduction , Animals , Gels/chemistry , Fish Products/analysis , Fish Proteins/chemistry , Sodium Chloride/chemistry , Sodium Chloride/analysis , Fishes , Food Handling , Water/chemistry , Perciformes/metabolism , Hydrogen-Ion Concentration
4.
Food Chem ; 451: 139325, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38657519

ABSTRACT

Muscle protein stability during freeze-thaw (F-T) cycles was investigated with tilapia cultured in recirculating aquaculture systems (RAS) and traditional aquaculture in ponds (TAP). This study found that fatty acids (eg., palmitic acid) were enriched in TAP, while antioxidants (eg., glutathione) were enriched in RAS. Generally, proteins in the RAS group exhibited greater stability against denaturation during the F-T cycle, suggested by a less decrease in haem protein content (77% in RAS and 86% in TAP) and a less increase in surface hydrophobicity of sarcoplasmic protein (63% in RAS and 101% in TAP). There was no significant difference in oxidative stability of myofibrillar protein between the two groups. This study provides a theoretical guide for the quality control of tilapia cultured in RAS during frozen storage.


Subject(s)
Aquaculture , Fish Proteins , Freezing , Protein Stability , Tilapia , Animals , Tilapia/metabolism , Fish Proteins/chemistry , Fish Proteins/metabolism , Muscle Proteins/metabolism , Muscle Proteins/chemistry , Metabolomics , Ponds/chemistry , Muscles/chemistry , Muscles/metabolism , Fatty Acids/metabolism , Fatty Acids/chemistry , Fatty Acids/analysis
5.
Brain Res ; 1828: 148774, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38244758

ABSTRACT

Cat superior colliculus (SC) neurons commonly combine information from different senses, which facilitates event detection and localization. Integration in SC multisensory neurons depends on the spatial and temporal relationships between cross-modal cues. Here, we revealed the parallel process of short-term plasticity in the temporal/spatial integration process during adulthood that adapts multisensory integration to reliable changes in environmental conditions. Short-term experience alters the temporal preferences of SC multisensory neurons, and this short-term plasticity in the temporal/spatial integration process is limited to changes in cross-modal timing (a factor commonly induced by events at different distances from the receiver). However, this plasticity was not evident in response to changes in the cross-modal spatial configuration.


Subject(s)
Sensation , Superior Colliculi , Superior Colliculi/physiology , Acoustic Stimulation , Photic Stimulation , Sensation/physiology , Neurons/physiology , Auditory Perception/physiology , Visual Perception/physiology
6.
Int J Biol Macromol ; 260(Pt 2): 129532, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246447

ABSTRACT

The pH buffering capacity is an important functionality of muscle proteins, and muscle foods are susceptible to being oxidized during storage and processing. In order to study the effect of oxidation on the pH buffering capacity of myofibrillar proteins, myofibrils extracted from snakehead fish (Channa argus) were oxidized with H2O2. Results showed that increased oxidation led to loss of free sulfhydryl groups, formation of carbonyl groups, increased surface hydrophobicity, and aggregation of myofibrillar proteins. In addition, there was a significant reduction in the content of histidine in oxidized myofibrillar proteins. The pH buffering capacity of myofibrillar proteins significantly decreased from 3.14 ± 0.03 mM H+/(mL × ΔpH) down to 2.55 ± 0.03 mM H+/(mL × ΔpH) after oxidation with 50 mM H2O2. Both oxidized myofibrillar proteins and histidine showed a high pH buffering capacity at pH near 5.8, which is the histidine pKa value. Here, we hypothesize that oxidation-induced changes in the pH buffering capacity of myofibrillar proteins were driven by oxidative modification of histidine and structural changes of myofibrillar proteins. The significance of this study to food industry may be the awareness that protein oxidation may affect pH through changes in buffering capacity. And the use of antioxidants, especially those targeting at histidine will be promising in addressing this issue.


Subject(s)
Histidine , Hydrogen Peroxide , Animals , Histidine/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Muscle Proteins/chemistry , Hydrogen-Ion Concentration , Myofibrils/chemistry
7.
Nat Prod Res ; : 1-5, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37791599

ABSTRACT

Stevia rebaudiana boasts a wide range of medical and food applications and contains polysaccharides that exert beneficial effects against oxidative stress. In this study, we optimised the extraction of a polysaccharide (SRRP) from S. rebaudiana roots by employing a Box-Behnken design and response surface methodology. The optimal extraction conditions were as follows: 93.57 min, 71.67 °C, and a water-to-raw material ratio of 21.40 mL/g. Under these conditions, 14.00 ± 0.35% of crude polysaccharide was obtained. Treatment of RAW264.7 cells with SRRP prior to the addition of H2O2, a major contributor to oxidative damage, significantly increased cell viability. In addition, SRRP increased the levels of superoxide dismutase, catalase, and glutathione and reduced the levels of malondialdehyde in RAW264.7 cells. Therefore, SRRP can provide effective protection against H2O2-induced oxidative damage. These findings indicate the potential of SRRP as a natural antioxidant in the food and pharmaceutical industries.

8.
Carbohydr Polym ; 322: 121343, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37839846

ABSTRACT

This study explored a new physical modification approach to regulate enzymatic resistance of high-amylose starch for potentially better nutritional outcomes. High-amylose maize starch (HAMS) was subjected to chain depolymerization by electron beam irradiation (EBI), followed by inducing ordered structure through annealing in palmitic acid solution (APAS). APAS treatment significantly promotes the formation of ordered structure. Starch after the combinative modification showed up to 5.2 % increase in total crystallinity and up to 1.2 % increase in V-type fraction. The EBI-APAS modification led to increased gelatinization temperature (from 66.1 to 87.6 °C) and reduced final digested percentage under in vitro stimulated digestion conditions. The moderate extent of depolymerization resulted in higher enzymatic resistance, indicating that the extent of depolymerization is crucial in EBI-APAS modification. Pearson analysis showed a significant correlation between gelatinization onset temperature and digestion kinetic parameter (k1, rate constant of fast-phase digestion). Overall, the result suggests that ordered structures of degraded molecules induced by the combinative modification contribute to the enzymatic resistance of starch. This study sheds lights on future applications of EBI-APAS approach to regulate multi-scale structures and nutritional values of high-amylose starch.


Subject(s)
Amylose , Zea mays , Amylose/chemistry , Zea mays/chemistry , Palmitic Acid , Starch/chemistry , Temperature
9.
Int J Biol Macromol ; 253(Pt 2): 126756, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37678686

ABSTRACT

The molecular composition of starch leachates from starch-based foods has been recently recognised as a crucial determinant of food properties. However, there is limited knowledge on the regulation of this composition through irradiative depolymerization of starch. This research investigates the leaching behaviour of maize starch depolymerized by electron beam irradiation, and the relationship between the composition of leached starch and structures of modified starch granules. The analysis using 1H NMR spectroscopy confirmed a decrease in the degree of branching (from 4.4 % to 2.8 %), while size-exclusion chromatography identified a newly-derived amylopectin fraction of a smaller hydrodynamic radius (approximately 60-80 nm). The structural properties of the starch granules were also analysed, revealing an increased BET-area of granules and reduced total crystallinity after depolymerization. In the leachates of swollen granules, the bimodal distribution of starch molecules evolves into unimodal with the increase of the irradiative dosage, while modified starch leached more starch molecules with Rh < 10 nm. The results of principal component analysis and Pearson correlation analysis indicate that the degree of branching of degraded starch molecules, as well as the newly-derived amylopectin fraction, significantly correlates (p < 0.01) with the molecular size of leached starch molecules (Rh < 10 nm). It is thus proposed that the cleavage of α-1,6 linkage may be a critical factor in controlling the leaching process of irradiated starch granules. This study highlights the potential of irradiative degradation to control the molecular composition and structure of starch leachates, thereby optimizing the properties of starch-based foods.


Subject(s)
Amylopectin , Zea mays , Amylopectin/chemistry , Zea mays/chemistry , Molecular Structure , Amylose/chemistry , Starch/chemistry
10.
Molecules ; 28(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37630413

ABSTRACT

Irradiation can be used for the preservation of chickpea protein as it can destroy microorganisms, bacteria, virus, or insects that might be present. However, irradiation may provoke oxidative stress, and therefore modify the functionality and nutritional value of chickpea protein. In order to study the effects of irradiation on the physicochemical properties and digestion behaviour of chickpea protein, chickpea protein concentrate (CPC) was treated with electron beam irradiation (EBI) at doses of 5, 10, 15, and 20 kGy. After irradiation, protein solubility first increased at 10 kGy and 15 kGy, and then decreased at the higher dose of 20 kGy. This was supported by SDS-PAGE, where the intensity of major protein bands first increased and then decreased. Increased doses of EBI generally led to greater oxidative modification of proteins in CPC, indicated by reduced sulfhydryls and increased carbonyls. In addition, the protein structure was modified by EBI as shown by Fourier transform infrared spectroscopy analysis, where α-helix generally decreased, and ß-sheet increased. Although the protein digestibility was not significantly affected by EBI, the peptidomic analysis of the digests revealed significant differences among CPC irradiated with varying doses. A total of 337 peptides were identified from CPC irradiated with 0 kGy, 10 kGy, and 20 kGy, with 18 overlapping peptides and 60, 29, and 40 peptides specific to the groups of 0, 10, and 20 kGy respectively. Theoretical calculation showed that the distribution of peptide length, hydrophobicity, net charge, and C-terminal residues were affected by irradiation. The 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity showed a marginal decrease with an increasing dose of irradiation. In conclusion, EBI led to oxidative modification and structural changes in chickpea protein, which subsequently affected the physicochemical properties of peptides obtained from in-vitro digestion of CPC, despite similar digestibility.


Subject(s)
Cicer , Electrons , Electrophoresis, Polyacrylamide Gel , Nutritive Value , Oxidative Stress
11.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589389

ABSTRACT

The demand for clean-label starch, perceived as environmentally friendly in terms of production and less hazardous to health, has driven the advancement of food physical processing technologies aimed at modifying starch. One of the key objectives of these modifications has been to reduce the glycaemic potency and increase resistant starch content of starch, as these properties have the potential to positively impact metabolic health. This review provides a comprehensive overview of recent updates in typical physical processing techniques, including annealing, heat-moisture, microwave and ultrasonication, and a brief discussion of several promising recent-developed methods. The focus is on evaluating the molecular, supramolecular and microstructural changes resulting from these modifications and identifying targeted structures that can foster enzyme-digestion resistance in native starch and its forms relevant to food applications. After a comprehensive search and assessment, the current physical modifications have not consistently improved starch enzymatic resistance. The opportunities for enhancing the effectiveness of modifications lie in (1) identifying modification conditions that avoid the intensive disruption of the granular and supramolecular structure of starch and (2) exploring novel strategies that incorporate multi-type modifications.

12.
Molecules ; 28(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37513304

ABSTRACT

In order to clarify the individual role of freezing and frozen storage on the quality of fish, fillets of large-mouth bass (Micropterus salmoides) were subjected to different freezing rates (freezing with -18 °C (A), -60 °C (B), and -60 °C with forced air circulation at 2 m/s (C), respectively) followed by frozen storage at -18 °C for 30 and 90 days. Another two groups were frozen at -60 °C, followed by storage at -40 °C (D) and -60 °C (E), respectively. Results showed that water-holding and TVBN were mainly affected by storage time. No significant changes were found in free thiol content among treatments. A greater freezing rate and lower storage temperature generally led to lower TBARS. GC × GC-TOFMS revealed a total of 66 volatile compounds, which were related to lipid oxidation. PLS-DA showed that fresh samples were separated from the frozen-thawed ones, and fillets in groups D and E were relatively close to fresh fillets in the composition of oxidation-related volatiles. In conclusion, freezing rate and storage temperature had a significant impact on lipid oxidation and protein denaturation in the fillets of large-mouth bass, while protein oxidation was more affected by freezing rate.


Subject(s)
Bass , Animals , Freezing , Temperature , Lipids , Mouth , Food Storage/methods
13.
Food Chem ; 424: 136344, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37207609

ABSTRACT

This study explores a new strategy for manipulating the digestibility of high-amylose maize starch (HAMS) through combinative modifications, namely depolymerization via electron beam irradiation (EBI) followed by reorganizing glucan chains via heat moisture treatment (HMT). The results show that semi-crystalline structure, morphological features and thermal properties of HAMS remained similar. However, EBI increased branching degree of the starch at high irradiation dosage (20 kGy), resulting in more readily leached amylose during heating. HMT increased the relative crystallinity (3.9-5.4% increase) and V-type fraction (0.6-1.9% increase), without significant changes (p > 0.05) in gelatinization onset temperature, peak temperature and enthalpy. Under simulated gastrointestinal conditions, the combination of EBI and HMT either had no effect or negative effect on starch enzymatic resistance, depending on the irradiation dosage. These results suggest that the depolymerization by EBI predominantly affects the changes in enzyme resistance, rather than the growth and perfection of crystallites induced by HMT.


Subject(s)
Amylose , Starch , Starch/chemistry , Amylose/chemistry , Hot Temperature , Electrons , Temperature
14.
Food Res Int ; 163: 112204, 2023 01.
Article in English | MEDLINE | ID: mdl-36596136

ABSTRACT

In order to study the effect of oxidation on the dye-binding behavior of myofibrillar proteins, selected dyes with different charges (positively charged Sarfarin O (SO), neutral bromophenol blue (BPB), and negatively charged Orange G (OG)) were incubated with myofibrils oxidized by the Fenton system with H2O2 (10 mM). Upon oxidation, loss of free thiols, formation of carbonyls, particle size, and hydrophobicity of myofibrillar proteins (MPs) increased. The absolute value of Zeta-potential increased by 14.48 % after oxidation, the myofibrillar proteins shifted to a more acidic isoelectric point (pI) upon oxidation. Oxidation decreased net positive charges of myofibrillar protein and the binding ability of MPs towards OG in the environment with pH less than pI and the affinity of MPs towards SO in the environment with pH more than pI were thus increased. Here we propose a hypothesis that oxidation-induced change in net charges is the driving force affecting the amount of protein-bound dye. This paper aims to examine the effect of oxidation on the net charges of myofibrillar proteins and to provide insight into the mechanism of oxidation-induced changes in protein-bound dyes.


Subject(s)
Coloring Agents , Muscle Proteins , Isoelectric Point , Hydrogen Peroxide , Myofibrils
16.
Food Chem ; 411: 135515, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36693300

ABSTRACT

The objective of this study was to elucidate the influence of oxidative modifications of myofibrillar proteins (MPs) on their surface properties. Oxidative modifications (deamination, formation of disulfide bonds and Schiff bases), particle size, net surface charge, and binding ability of volatiles (2-enthylfuran, 1-octen-3-ol, hexanal, and octanal) of oxidized MPs was measured. Molecular docking of volatiles with actomyosin was performed using Qvina-W program and the specific oxidative modifications (monoxidation and deamination) of MPs were determined using LC-MS/MS. Results showed that oxidation of Cys (forming sulfinic, sulfonic, sulfenic acid, and disulfide bonds), monoxidation of Ala, Lys, Glu, and Asn, and deamination of Lys changed the surface properties of oxidized MPs including enhanced surface hydrophobicity and decreased affinity to volatile compounds and water. Overall, this study gives evidence of how protein oxidation affects the properties of MPs and therefore deteriorates fish meat quality.


Subject(s)
Carps , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , Molecular Docking Simulation , Proteins , Oxidation-Reduction , Disulfides/chemistry , Surface Properties
17.
Inflammation ; 46(2): 534-554, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36484925

ABSTRACT

Noninfectious liver injury, including the effects of chemical material, drugs and diet, is a major cause of liver diseases worldwide. In chemical and drugs-induced liver injury, innate inflammatory responses are mediated by extracellular danger signals. The S100 protein can act as danger signals, which can promote the migration and chemotaxis of immune cells, promote the release of various inflammatory cytokines, and regulate the body's inflammatory and immune responses. However, the role of S100A6 in inflammatory response in chemical and drugs-induced sterile liver injury remains unclear. We constructed the model of sterile liver injury induced by carbon tetrachloride (CCl4)/Paracetamol (APAP) and performed RNA sequencing (RNA-seq) on the liver tissues after injury (days 2 and 5). We analyzed inflammatory protein secretion in the liver tissue supernatant by enzyme-linked immunosorbent assay (ELISA), determined the inflammation response by bioinformatic analysis during sterile liver injury, and assessed mononuclear/macrophage infiltration by immunohistochemistry and flow cytometry. Immunohistochemistry was used to analyze the location of S100A6. We conducted inflammatory factor expression analysis and molecular mechanistic studies in Kupffer cells (KCs) induced by S100A6 using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), ELISA, and western blot in vitro experiments. We performed chemokine CCL2 expression analysis and molecular mechanism studies using the same method. We used a Transwell assay to show the infiltration of mononuclear/macrophage. We here observed that aggravated inflammatory response was shown in CCl4 and APAP-administrated mice, as evidenced by enhanced production of inflammatory cytokines (TNF-α, IL-1ß), and elevated mononuclear/macrophage infiltration and activation of immunity. The expression of S100A6 was significantly increased on day 2 after sterile liver injury, which is primarily produced by injured liver cells. Mechanistic studies established that S100A6 activates Kupffer cells (KCs) via the p-P38, p-JNK and P65 pathways to induce inflammation in vitro. Furthermore, TNF-α can stimulate liver cells via the p-P38 and p-JNK pathways to produce CCL2 and promote the infiltration of mononuclear/macrophage. In summary, we showed that S100A6 plays an important role in regulating inflammation, thus influencing sterile liver injury. Our findings provide novel evidence that S100A6 can as a danger signal that contributes to pro-inflammatory activation through p-P38 and p-JNK pathways in CCl4 and APAP-induced sterile liver injury in mice. In addition, the inflammatory factor TNF-α induces a large amount of CCL2 production in normal liver cells surrounding the injured area through a paracrine action, which is chemotactic for blood mononuclear/macrophage infiltration.


Subject(s)
Chemical and Drug Induced Liver Injury , Kupffer Cells , Animals , Mice , Chemical and Drug Induced Liver Injury/metabolism , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Liver/metabolism , Macrophages/metabolism , MAP Kinase Signaling System , Tumor Necrosis Factor-alpha/metabolism
18.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36193875

ABSTRACT

Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.

19.
Curr Res Food Sci ; 5: 1616-1624, 2022.
Article in English | MEDLINE | ID: mdl-36161225

ABSTRACT

Plasma is a new technology used to modify myofibrillar proteins (MPs) structure and promote protein aggregation. In order to study the mechanism of plasma modifying MPs thus the effects on qualities of MP gels, MPs were extracted by 0.6 M NaCl solution prepared with plasma-activated water (PAW) at different treatment time (0 s, 30 s, 60 s, 120 s, 240 s). With the prolonged PAW treatment time from 0 to 240 s, the pH values of natural MP solutions decreased significantly from 5.91 to 2.61 (P < 0.05), the H2O2 concentration in PAW increased from 0 to 70.82 µg/L (P < 0.05), and the net negative charges of MPs first decreased and then increased (P < 0.05). In addition, PAW caused significantly (P < 0.05) weakened ionic bonds and enhanced hydrophobic interactions, which promoted the aggregation and gelation of MPs thus forming MP gel with higher gel strength and a denser three-dimensional network. Furthermore, Raman spectra and intrinsic fluorescence suggested that PAW promoted the unfolding of MP structures and transformation from α-helixes and random coils to ß-sheets and ß-turns. Dynamic rheology indicated a gradually increased storage modulus and shortened degradation time of MPs with an increasing treatment time of PAW. Furthermore, PAW modification significantly improved the water holding capacity of MPs gels. These results demonstrated that the declined pH of MP solutions induced by PAW and increased H2O2 in PAW altered the ζ-potential of MP solutions and promoted the unfolding and aggregation of MPs during heating via hydrophobic interactions, ultimately enhancing gelling properties of MPs. The present work suggested the potential use of PAW in preparing freshwater MP gels with high quality.

20.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36122384

ABSTRACT

In addition to microbial spoilage and lipid peroxidation, protein oxidation is increasingly recognized as a major cause for quality deterioration of muscle-based foods. Although protein oxidation in muscle-based foods has attracted tremendous interest in the past decade, specific oxidative pathways and underlying mechanisms of protein oxidation in aquatic products remain largely unexplored. The present review covers the aspects of the origin and site-specific nature of protein oxidation, progress on the characterization of protein oxidation, oxidized proteins in aquatic products, and impact of protein oxidation on protein functionalities. Compared to meat protein oxidation, aquatic proteins demonstrate a less extent of oxidation on aromatic amino acids and are more susceptible to be indirectly oxidized by lipid peroxidation products. Different from traditional measurement of protein carbonyls and thiols, proteomics-based strategy better characterizes the targeted oxidation sites within proteins. The future trends using more robust and accurate targeted proteomics, such as parallel reaction monitoring strategy, to characterize protein oxidation in aquatic products are also given.

SELECTION OF CITATIONS
SEARCH DETAIL
...