Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Res ; 238(Pt 1): 116971, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37717805

ABSTRACT

Curcumin is a natural herb and polyphenol that is obtained from the medicinal plant Curcuma longa. It's anti-bacterial, anti-inflammatory, anti-cancer, anti-mutagenic, antioxidant and antifungal properties can be leveraged to treat a myriad of oral and systemic diseases. However, natural curcumin has weak solubility, limited bioavailability and undergoes rapid degradation, which severely limits its therapeutic potential. To overcome these drawbacks, nanocurcumin (nCur) formulations have been developed for improved biomaterial delivery and enhanced treatment outcomes. This novel biomaterial holds tremendous promise for the treatment of various oral diseases, the majority of which are caused by dental biofilm. These include dental caries, periodontal disease, root canal infection and peri-implant diseases, as well as other non-biofilm mediated oral diseases such as oral cancer and oral lichen planus. A number of in-vitro studies have demonstrated the antibacterial efficacy of nCur in various formulations against common oral pathogens such as S. mutans, P. gingivalis and E. faecalis, which are strongly associated with dental caries, periodontitis and root canal infection, respectively. In addition, some clinical studies were suggestive of the notion that nCur can indeed enhance the clinical outcomes of oral diseases such as periodontitis and oral lichen planus, but the level of evidence was very low due to the small number of studies and the methodological limitations of the available studies. The versatility of nCur to treat a diverse range of oral diseases augurs well for its future in dentistry, as reflected by rapid pace in which studies pertaining to this topic are published in the scientific literature. In order to keep abreast of the latest development of nCur in dentistry, this narrative review was undertaken. The aim of this narrative review is to provide a contemporaneous update of the chemistry, properties, mechanism of action, and scientific evidence behind the usage of nCur in dentistry.


Subject(s)
Curcumin , Dental Caries , Lichen Planus, Oral , Periodontitis , Humans , Curcumin/chemistry , Curcumin/pharmacology , Biocompatible Materials , Anti-Inflammatory Agents/pharmacology , Dentistry
2.
RSC Adv ; 12(20): 12773-12793, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35496329

ABSTRACT

Amongst dental ceramics, nano zirconia (ZrNp) has shown exceptional developments in the field of dentistry in recent years. Zirconia is an oxide that possess superior optical, mechanical, and biological properties. As a novel nanoparticle, it has been widely used in various fields of dentistry due to its improved mechanical properties, biocompatibility, and stable structure. Provision of metal free solutions is one of the prime requirements in dental materials. Many metal alloys used extensively possess unaesthetic colors and display chemical interactions in the oral cavity encouraging use of zirconia for dental use. Use of ZrNp based ceramics has increased due to its resistance to corrosion, superior color matching that enhances esthetics and improved strength compared to conventional biomaterials. This review discusses the recent scientific literature on the synthesis, properties and types, applications, and toxicity of ZrNp in the field of dentistry.

3.
Int J Pharm ; 592: 120043, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33152476

ABSTRACT

Cancer is a community health hazard which progress at a fatal rate in various countries across the globe. An agent used for chemotherapy should exhibit ideal properties to be an effective anticancer medicine. The chemotherapeutic medicines used for treatment of various cancers are, gemcitabine, paclitaxel, etoposide, methotrexate, cisplatin, doxorubicin and 5-fluorouracil. However, many of these agents present nonspecific systemic toxicity that prevents their treatment efficiency. Of all, gemcitabine has shown to be an active agent against colon, pancreatic, colon, ovarian, breast, head and neck and lung cancers in amalgamation with various anticancer agents. Gemcitabine is considered a gold-standard and the first FDA approved agent used as a monotherapy in management of advanced pancreatic cancers. However due to its poor pharmacokinetics, there is need of newer drug delivery system for efficient action. Nanotechnology has shown to be an emerging trend in field of medicine in providing novel modalities for cancer treatment. Various nanocarriers have the potential to deliver the drug at the desired site to obtain information about diagnosis and treatment of cancer. This review highlights on various nanocarriers like polymeric nanoparticles, solid lipid nanoparticles, mesoporous silica nanoparticles, magnetic nanoparticles, micelles, liposomes, dendrimers, gold nanoparticles and combination approaches for delivery of gemcitabine for cancer therapy. The co-encapsulation and concurrent delivery of Gem with other anticancer agents can enhance drug action at the cancer site with reduced side effects.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Nanoparticles , Antineoplastic Agents/therapeutic use , Deoxycytidine/analogs & derivatives , Drug Carriers , Drug Delivery Systems , Gold , Gemcitabine
4.
Int J Pharm ; 586: 119596, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32622805

ABSTRACT

Major goal of dental treatment is to eradicate the existing diseases of the oral cavity and implement preventive measures to control the spread of the diseases. Various interventions are being used to cure the dental diseases. Due to the nanostructures, high surface volume and biocompatibility, Gold nanoparticles (GNPs) have been experimented in the treatment of gum diseases, dental caries, tissue engineering, dental implantology and diagnosis of cancers. GNPs possess antifungal and antibacterial activity, hence are incorporated in various biomaterials to potentiate the effect. They also enhance the mechanical properties of materials leading to improved outcomes. They are available in different sizes and concentrations to exhibits its beneficial outcomes. These properties of GNPs make these materials as choice of fillers in biomaterials. This review aims to discuss the effect of incorporation of GNPs in several biomaterials used for dental and medical applications.


Subject(s)
Dental Caries , Metal Nanoparticles , Biocompatible Materials , Dental Caries/prevention & control , Dentistry , Gold , Humans
5.
Heliyon ; 5(10): e02544, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31687479

ABSTRACT

Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.

6.
Drug Discov Today ; 24(1): 85-98, 2019 01.
Article in English | MEDLINE | ID: mdl-30176358

ABSTRACT

Maintenance of oral health is a major challenge in dentistry. Different materials have been used to treat various dental diseases, although treatment success is limited by features of the biomaterials used. To overcome these limitations, materials incorporated with nanoparticles (NPs) can be used in dental applications including endodontics, periodontics, tissue engineering, oral surgery, and imaging. The unique properties of NPs, including their surface:volume ratio, antibacterial action, physical, mechanical, and biological characteristics, and unique particle size have rendered them effective vehicles for dental applications. In this review, we provide insights into the various applications of NPs in dentistry, including their benefits, limitations, properties, actions and future potential.


Subject(s)
Biocompatible Materials/therapeutic use , Nanoparticles/therapeutic use , Dentistry , Humans
7.
Mater Sci Eng C Mater Biol Appl ; 91: 881-898, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30033323

ABSTRACT

Oral cavity is a gateway to the entire body and protection of this gateway is a major goal in dentistry. Plaque biofilm is a major cause of majority of dental diseases and although various biomaterials have been applied for their cure, limitations pertaining to the material properties prevent achievement of desired outcomes. Nanoparticle applications have become useful tools for various dental applications in endodontics, periodontics, restorative dentistry, orthodontics and oral cancers. Off these, silver nanoparticles (AgNPs) have been used in medicine and dentistry due to its antimicrobial properties. AgNPs have been incorporated into biomaterials in order to prevent or reduce biofilm formation. Due to greater surface to volume ratio and small particle size, they possess excellent antimicrobial action without affecting the mechanical properties of the material. This unique property of AgNPs makes these materials as fillers of choice in different biomaterials whereby they play a vital role in improving the properties. This review aims to discuss the influence of addition of AgNPs to various biomaterials used in different dental applications.


Subject(s)
Biocompatible Materials/chemistry , Dentistry , Metal Nanoparticles/chemistry , Silver/chemistry , Animals , Disease Models, Animal , Metal Nanoparticles/toxicity , Silver/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...