Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 261(1): 43-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37421536

ABSTRACT

When plants are exposed to water stress, photosynthesis is downregulated due to enhanced reactive oxygen species (ROS) and nitric oxide (NO). In contrast, photorespiratory metabolism protected photosynthesis and sustained yield. Modulation of photorespiration by ROS was established, but the effect of NO on photorespiratory metabolism was unclear. We, therefore, examined the impact of externally added NO by using S-nitrosoglutathione (GSNO), a natural NO donor, in leaf discs of pea (Pisum sativum) under dark or light: moderate or high light (HL). Maximum NO accumulation with GSNO was under high light. The presence of 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, prevented the increase in NO, confirming the release of NO in leaves. The increase in S-nitrosothiols and tyrosine-nitrated proteins on exposure to GSNO confirmed the nitrosative stress in leaves. However, the changes by GSNO in the activities and transcripts of five photorespiratory enzymes: glycolate oxidase, hydroxypyruvate reductase, catalase, glycerate kinase, and phosphoglycolate phosphatase activities were marginal. The changes in photorespiratory enzymes caused by GSNO were much less than those with HL. Since GSNO caused only mild oxidative stress, we felt that the key modulator of photorespiration might be ROS, but not NO.


Subject(s)
Pisum sativum , S-Nitrosoglutathione , Nitric Oxide/metabolism , Nitric Oxide Donors/metabolism , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , S-Nitrosoglutathione/pharmacology , S-Nitrosoglutathione/metabolism
2.
Plants (Basel) ; 10(5)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063541

ABSTRACT

Photorespiration, an essential component of plant metabolism, is concerted across four subcellular compartments, namely, chloroplast, peroxisome, mitochondrion, and the cytoplasm. It is unclear how the pathway located in different subcellular compartments respond to stress occurring exclusively in one of those. We attempted to assess the inter-organelle interaction during the photorespiratory pathway. For that purpose, we induced oxidative stress by menadione (MD) in mitochondria and photo-oxidative stress (high light) in chloroplasts. Subsequently, we examined the changes in selected photorespiratory enzymes, known to be located in other subcellular compartments. The presence of MD upregulated the transcript and protein levels of five chosen photorespiratory enzymes in both normal and high light. Peroxisomal glycolate oxidase and catalase activities increased by 50% and 25%, respectively, while chloroplastic glycerate kinase and phosphoglycolate phosphatase increased by ~30%. The effect of MD was maximum in high light, indicating photo-oxidative stress was an influential factor to regulate photorespiration. Oxidative stress created in mitochondria caused a coordinative upregulation of photorespiration in other organelles. We provided evidence that reactive oxygen species are important signals for inter-organelle communication during photorespiration. Thus, MD can be a valuable tool to modulate the redox state in plant cells to study the metabolic consequences across membranes.

3.
J Plant Physiol ; 246-247: 153133, 2020.
Article in English | MEDLINE | ID: mdl-32065920

ABSTRACT

Reports on the effect of nitric oxide (NO) or reactive oxygen species (ROS) on photosynthesis and respiration in leaf tissues are intriguing; therefore, the effects of exogenous addition of sodium nitroprusside (SNP, releases NO) or H2O2 on the photosynthetic O2 evolution and respiratory O2 uptake by mesophyll protoplasts in pea (Pisum sativum) were evaluated in the present study. Low concentrations of SNP or H2O2 were used to minimize nonspecific effects. The effects of NO or H2O2 on respiration and photosynthesis were different. The presence of NO decreased the rate of photosynthesis but caused a marginal stimulation of dark respiration. Conversely, externally administered H2O2 drastically decreased the rate of respiration but only slightly decreased photosynthesis. The PS I activity was more sensitive to NO than PS II. On the other hand, 100 µM H2O2 had no effect on the photochemical reactions of either PS I or PS II. The sensitivity of photosynthesis to antimycin A or SHAM (reflecting the interplay between chloroplasts and mitochondria) was not affected by NO. By contrast, H2O2 markedly decreased the sensitivity of photosynthesis to antimycin A and SHAM. It can be concluded that chloroplasts are the primary targets of NO, while mitochondria are the primary targets of ROS in plant cells. We propose that H2O2 can be an important signal to modulate the crosstalk between chloroplasts and mitochondria.


Subject(s)
Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Nitroprusside/metabolism , Photosynthesis , Pisum sativum/physiology , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/administration & dosage , Mesophyll Cells/drug effects , Mesophyll Cells/physiology , Nitric Oxide/administration & dosage , Nitroprusside/administration & dosage , Pisum sativum/drug effects , Plant Leaves/drug effects , Plant Leaves/physiology , Protoplasts/drug effects , Protoplasts/physiology , Reactive Oxygen Species/administration & dosage
4.
Protoplasma ; 256(2): 449-457, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30206687

ABSTRACT

Oxidative stress can occur in different parts of plant cells. We employed two oxidants that induce reactive oxygen species (ROS) in different intracellular compartments: methyl viologen (MV, in chloroplasts) and menadione (MD, in mitochondria). The responses of pea (Pisum sativum) leaf discs to MV or MD after 4-h incubation in dark or moderate (300 µE m-2 s-1) or high light (1200 µE m-2 s-1) were examined. Marked increase in ROS levels was observed, irrespective of compartment targeted. The levels of proline, a compatible solute, increased markedly much more than that of ascorbate or glutathione during oxidative/photo-oxidative stress, emphasizing the importance of proline. Further, the activities and transcripts of enzymes involved in biosynthesis or oxidation of proline were studied. An upregulation of biosynthesis and downregulation of oxidation was the basis of proline accumulation. Pyrroline-5-carboxylate synthetase (P5CS, involved in biosynthesis) and proline dehydrogenase (PDH, involved in oxidation) were the key enzymes regulated under oxidative stress. Since these two enzymes-P5CS and PDH-are located in chloroplasts and mitochondria, respectively, we suggest that proline metabolism can help to mediate inter-organelle interactions and achieve redox homeostasis under photo-oxidative stress.


Subject(s)
Chloroplasts/metabolism , Mitochondria/metabolism , Oxidative Stress , Pisum sativum/metabolism , Plant Leaves/metabolism , Proline/metabolism , Ascorbic Acid/metabolism , Gene Expression Regulation, Plant , Glutathione/metabolism , Oxidation-Reduction , Pisum sativum/genetics , Pisum sativum/growth & development , Proline Oxidase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism
5.
Photosynth Res ; 139(1-3): 67-79, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30187303

ABSTRACT

Optimization of photosynthetic performance and protection against abiotic stress are essential to sustain plant growth. Photorespiratory metabolism can help plants to adapt to abiotic stress. The beneficial role of photorespiration under abiotic stress is further strengthened by cyclic electron flow (CEF) and alternative oxidase (AOX) pathways. We have attempted to critically assess the literature on the responses of these three phenomena-photorespiration, CEF and AOX, to different stress situations. We emphasize that photorespiration is the key player to protect photosynthesis and upregulates CEF as well as AOX. Then these three processes work in coordination to protect the plants against photoinhibition and maintain an optimal redox state in the cell, while providing ATP for metabolism and protein repair. H2O2 generated during photorespiratory metabolism seems to be an important signal to upregulate CEF or AOX. Further experiments are necessary to identify the signals originating from CEF or AOX to modulate photorespiration. The mutants deficient in CEF or AOX or both could be useful in this regard. The mutual interactions between CEF and AOX, so as to keep their complementarity, are also to be examined further.


Subject(s)
Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Photosynthesis/physiology , Plant Proteins/metabolism , Chloroplasts/metabolism , Glycine Dehydrogenase (Decarboxylating)/metabolism , Stress, Physiological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...