Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 78: 457-466, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28576009

ABSTRACT

Superparamagnetic magnetite nanoparticles have been synthesized by a highly reproducible polyvinyl alcohol (PVA)-based modified sol-gel process using water as the only solvent. The synthesis method has proven to be effective, time and cost saving and environmental friendly, resulting in PVA-coated magnetite nanoparticles as direct product from the synthesis, without any special atmosphere or further thermal treatment. X-ray diffraction and transmission electron microscopy revealed that the biocompatible PVA-coating prevents the nanoparticle agglomeration, giving rise to spherical crystals with sizes of 6.8nm (as-cast) and 9.5nm (heat treated) with great control over size and shape with narrow size distribution. Complementary compositional and magnetic characterizations were employed in order to study the surface chemistry and magnetic behavior of the samples, respectively. Cytotoxicity endpoints including no observed adverse effect concentration (NOAEC), 50% lethal concentration (LC50) and total lethal concentration (TLC) of the tested materials on cell viability were determined after 3, 24 and 48h of exposure. The PVA coating improved the biocompatibility of the synthesized magnetite nanoparticles showing good cell viability and low cytotoxicity effects on the MTT assay performed on BHK cells. Preliminary assessment of nanoparticles in vivo effects, performed after 48h on Balb/c mice, exposed to a range of different sub-lethal doses, showed their capacity to penetrate in liver and kidneys with no significant morphological alterations in both organs.


Subject(s)
Magnetite Nanoparticles , Animals , Magnetics , Microscopy, Electron, Transmission , Polyvinyl Alcohol , X-Ray Diffraction
2.
Braz. j. med. biol. res ; 38(10): 1455-1462, Oct. 2005. graf
Article in English | LILACS | ID: lil-409275

ABSTRACT

Cell fate decisions are governed by a complex interplay between cell-autonomous signals and stimuli from the surrounding tissue. In vivo cells are connected to their neighbors and to the extracellular matrix forming a complex three-dimensional (3-D) microenvironment that is not reproduced in conventional in vitro systems. A large body of evidence indicates that mechanical tension applied to the cytoskeleton controls cell proliferation, differentiation and migration, suggesting that 3-D in vitro culture systems that mimic the in vivo situation would reveal biological subtleties. In hematopoietic tissues, the microenvironment plays a crucial role in stem and progenitor cell survival, differentiation, proliferation, and migration. In adults, hematopoiesis takes place inside the bone marrow cavity where hematopoietic cells are intimately associated with a specialized three 3-D scaffold of stromal cell surfaces and extracellular matrix that comprise specific niches. The relationship between hematopoietic cells and their niches is highly dynamic. Under steady-state conditions, hematopoietic cells migrate within the marrow cavity and circulate in the bloodstream. The mechanisms underlying hematopoietic stem/progenitor cell homing and mobilization have been studied in animal models, since conventional two-dimensional (2-D) bone marrow cell cultures do not reproduce the complex 3-D environment. In this review, we will highlight some of the mechanisms controlling hematopoietic cell migration and 3-D culture systems.


Subject(s)
Animals , Humans , Bone Marrow Cells/cytology , Cell Culture Techniques/methods , Cell Movement/physiology , Hematopoietic Stem Cells/physiology , Spheroids, Cellular/physiology , Stromal Cells/physiology
3.
Braz J Med Biol Res ; 38(10): 1455-62, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16172738

ABSTRACT

Cell fate decisions are governed by a complex interplay between cell-autonomous signals and stimuli from the surrounding tissue. In vivo cells are connected to their neighbors and to the extracellular matrix forming a complex three-dimensional (3-D) microenvironment that is not reproduced in conventional in vitro systems. A large body of evidence indicates that mechanical tension applied to the cytoskeleton controls cell proliferation, differentiation and migration, suggesting that 3-D in vitro culture systems that mimic the in vivo situation would reveal biological subtleties. In hematopoietic tissues, the microenvironment plays a crucial role in stem and progenitor cell survival, differentiation, proliferation, and migration. In adults, hematopoiesis takes place inside the bone marrow cavity where hematopoietic cells are intimately associated with a specialized three 3-D scaffold of stromal cell surfaces and extracellular matrix that comprise specific niches. The relationship between hematopoietic cells and their niches is highly dynamic. Under steady-state conditions, hematopoietic cells migrate within the marrow cavity and circulate in the bloodstream. The mechanisms underlying hematopoietic stem/progenitor cell homing and mobilization have been studied in animal models, since conventional two-dimensional (2-D) bone marrow cell cultures do not reproduce the complex 3-D environment. In this review, we will highlight some of the mechanisms controlling hematopoietic cell migration and 3-D culture systems.


Subject(s)
Bone Marrow Cells/cytology , Cell Culture Techniques/methods , Cell Movement/physiology , Hematopoietic Stem Cells/physiology , Spheroids, Cellular/physiology , Animals , Humans , Stromal Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...