Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21257835

ABSTRACT

Since early 2021, SARS-CoV-2 variants of concern (VOCs) have been causing epidemic rebounds in many countries. Their properties are well characterised at the epidemiological level but the potential underlying within-host determinants remain poorly understood. We analyse a longitudinal cohort of 6,944 individuals with 14,304 cycle threshold (Ct) values of qPCR VOC screening tests performed in the general population and hospitals in France between February 6 and August 21, 2021. To convert Ct values into numbers of virus copies, we performed an additional analysis using droplet digital PCR (ddPCR). We find that the number of viral genome copies reaches a higher peak value and has a slower decay rate in infections caused by Alpha variant compared to that caused by historical lineages. Following the evidence that viral genome copies in upper respiratory tract swabs are informative on contagiousness, we show that the kinetics of the Alpha variant translate into significantly higher transmission potentials, especially in older populations. Finally, comparing infections caused by the Alpha and Delta variants, we find no significant difference in the peak viral copy number. These results highlight that some of the differences between variants may be detected in virus load variations.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21250080

ABSTRACT

Estimating the date at which an epidemic started in a country and the date at which it can end depending on interventions intensity are important to guide public health responses. Both are potentially shaped by similar factors including stochasticity (due to small population sizes), superspreading events, and memory effects (the fact that the occurrence of some events, e.g. recovering from an infection, depend on the past, e.g. the number of days since the infection). Focusing on COVID-19 epidemics, we develop and analyse mathematical models to explore how these three factors may affect early and final epidemic dynamics. Regarding the date of origin, we find limited effects on the mean estimates, but strong effects on their variances. Regarding the date of extinction following lockdown onset, mean values decrease with stochasticity or with the presence of superspreading events. These results underline the importance of accounting for heterogeneity in infection history and transmission patterns to accurately capture early and late epidemic dynamics.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20119925

ABSTRACT

France was one of the first countries to be reached by the COVID-19 pandemic. Here, we analyse 196 SARS-Cov-2 genomes collected between Jan 24 and Mar 24 2020, and perform a phylodynamics analysis. In particular, we analyse the doubling time, reproduction number ([R]t) and infection duration associated with the epidemic wave that was detected in incidence data starting from Feb 27. Different models suggest a slowing down of the epidemic in Mar, which would be consistent with the implementation of the national lock-down on Mar 17. The inferred distributions for the effective infection duration and[R] t are in line with those estimated from contact tracing data. Finally, based on the available sequence data, we estimate that the French epidemic wave originated between mid-Jan and early Feb. Overall, this analysis shows the potential to use sequence genomic data to inform public health decisions in an epidemic crisis context and calls for further analyses with denser sampling.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20110593

ABSTRACT

SARS-Cov-2 virus has spread over the world creating one of the fastest pandemics ever. The absence of immunity, asymptomatic transmission, and the relatively high level of virulence of the COVID-19 infection it causes led to a massive flow of patients in intensive care units (ICU). This unprecedented situation calls for rapid and accurate mathematical models to best inform public health policies. We develop an original parsimonious model that accounts for the effect of the age of infection on the natural history of the disease. Analysing the ongoing COVID-19 in France, we estimate the value of the key epidemiological parameters, such as the basic reproduction number [Formula], and the efficiency of the national control strategy. We then use our deterministic model to explore several scenarios posterior to lock-down lifting and compare the efficiency of non pharmaceutical interventions (NPI) described in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...