Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol ; 277(6): F907-13, 1999 12.
Article in English | MEDLINE | ID: mdl-10600938

ABSTRACT

Insulin has been shown to be a magnesium-conserving hormone acting, in part, through stimulation of magnesium absorption within the thick ascending limb. Although the distal convoluted tubule possesses the most insulin receptors, it is unclear what, if any, actions insulin has in the distal tubule. The effects of insulin were studied on immortalized mouse distal convoluted tubule (MDCT) cells by measuring cellular cAMP formation with radioimmunoassays and Mg2+ uptake with fluorescence techniques using mag-fura 2. To assess Mg2+ uptake, MDCT cells were first Mg(2+) depleted to 0.22 +/- 0.01 mM by culturing in Mg2+-free media for 16 h and then placed in 1.5 mM MgCl2, and the changes in intracellular Mg2+ concentration ([Mg2+]i) were measured with microfluorescence. [Mg2+]i returned to basal levels, 0.53 +/- 0.02 mM, with a mean refill rate, d([Mg2+]i)/dt, of 164 +/- 5 nM/s. Insulin stimulated Mg2+ entry in a concentration-dependent manner with maximal response of 214 +/- 12 nM/s, which represented a 30 +/- 5% increase in the mean uptake rate above control values. This was associated with a 2.5-fold increase in insulin-mediated cAMP generation (52 +/- 3 pmol. mg protein(-1). 5 min(-1)). Genistein, a tyrosine kinase inhibitor, diminished insulin-stimulated Mg2+ uptake (169 +/- 11 nM/s), but did not change insulin-mediated cAMP formation (47 +/- 5 pmol. mg protein(-1). 5 min(-1)). PTH stimulates Mg2+ entry, in part, through increases in cAMP formation. Insulin and PTH increase Mg2+ uptake in an additive fashion. In conclusion, insulin mediates Mg2+ entry, in part, by a genistein-sensitive mechanism and by modifying hormone-responsive transport. These studies demonstrate that insulin stimulates Mg2+ uptake in MDCT cells and suggest that insulin acts in concert with other peptide and steroid hormones to control magnesium conservation in the distal convoluted tubule.


Subject(s)
Cyclic AMP/metabolism , Insulin/pharmacology , Kidney Tubules, Distal/physiology , Magnesium/metabolism , Aldosterone/pharmacology , Animals , Biological Transport/drug effects , Cells, Cultured , Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Cytoplasm/metabolism , Genistein/pharmacology , Kidney Tubules, Distal/cytology , Kidney Tubules, Distal/drug effects , Kinetics , Mice , Microscopy, Fluorescence , Neomycin/pharmacology , Parathyroid Hormone/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Thionucleotides/pharmacology
2.
Am J Physiol ; 275(3): F353-60, 1998 09.
Article in English | MEDLINE | ID: mdl-9729507

ABSTRACT

The distal convoluted tubule plays a significant role in renal magnesium conservation. An immortalized mouse distal convoluted tubule (MDCT) cell line has been extensively used to study the cellular mechanisms of magnesium transport in this nephron segment. MDCT cells possess an extracellular polyvalent cation-sensing mechanism responsive to Mg2+, Ca2+, and neomycin. The present studies determined the effect of Mg2+/Ca2+ sensing on hormone-mediated cAMP formation and Mg2+ uptake in MDCT cells. MDCT cells were Mg2+ depleted by culturing in Mg2+-free media for 16 h, and Mg2+ uptake was measured by microfluorescence after placing the depleted cells in 1.5 mM MgCl2. The mean rate of Mg2+ uptake was 164 +/- 5 nM/s in control MDCT cells. Activation of Mg2+/Ca2+ sensing with neomycin did not affect basal Mg2+ uptake (155 +/- 5 nM/s). We have previously reported that treatment of MDCT cells with either glucagon or arginine vasopressin (AVP) stimulated Mg2+ entry. In the present studies, the addition of extracellular Mg2+ or Ca2+ inhibited glucagon- and AVP-stimulated cAMP formation and Mg2+ uptake in concentration-dependent manner with half-maximal concentrations of approximately 1.5 and 3.0 mM, respectively. Exogenous cAMP or forskolin stimulated Mg2+ uptake in the presence of Mg2+/Ca2+ sensing activation. We infer from these studies that Mg2+/Ca2+-sensing mechanisms located in the distal convoluted tubule may play a role in control of distal magnesium absorption.


Subject(s)
Calcium , Kidney Tubules, Distal/metabolism , Magnesium/metabolism , Amiloride/pharmacology , Animals , Arginine Vasopressin/pharmacology , Calcium/pharmacology , Cations, Divalent , Cell Line, Transformed , Colforsin/pharmacology , Culture Media , Cyclic AMP/biosynthesis , Cyclic AMP/pharmacology , Glucagon/pharmacology , Kidney Tubules, Distal/drug effects , Kinetics , Magnesium/pharmacology , Mice , Neomycin/pharmacology , Protein Synthesis Inhibitors
3.
Kidney Int ; 53(3): 583-92, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9507202

ABSTRACT

An immortalized cell line (designated MDCT) has been extensively used to investigate the cellular mechanisms of electrolyte transport within the mouse distal convoluted tubule. Mouse distal convoluted tubule cells possess many of the functional characteristics of the in vivo distal convoluted tubule. In the present study, we show that MDCT cells also possess a polyvalent cation-sensing mechanism that is responsive to extracellular magnesium and calcium. Southern hybridization of reverse transcribed-polymerase chain reaction (RT-PCR) products, sequence determination and Western analysis indicated that the calcium-sensing receptor (Casr) is expressed in MDCT cells. Using microfluorescence of single MDCT cells to determine cytosolic Ca2+ signaling, it was shown that the polyvalent cation-sensing mechanism is sensitive to extracellular magnesium concentration ([Mg2+]o) and extracellular calcium concentration ([Ca2+]o) in concentration ranges normally observed in the plasma. Moreover, both [Mg2+]o and [Ca2+]o were effective in generating intracellular Ca2+ transients in the presence of large concentrations of [Ca2+]o and [Mg2+]o, respectively. These responses are unlike those observed for the Casr in the parathyroid gland. Finally, activation of the polycation-sensitive mechanism with either [Mg2+]o or [Ca2+]o inhibited parathyroid hormone-, calcitonin-, glucagon- and arginine vasopressin-stimulated cAMP release in MDCT cells. These studies indicate that immortalized MDCT cells possess a polyvalent cation-sensing mechanism and emphasize the important role this mechanism plays in modulating intracellular signals in response to changes in [Mg2+]o as well as in [Ca2+]o.


Subject(s)
Calcium/metabolism , Kidney Tubules, Distal/metabolism , Magnesium/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cyclic AMP/metabolism , DNA Primers/genetics , DNA, Complementary/genetics , Extracellular Space/metabolism , Hormones/pharmacology , Intracellular Fluid/metabolism , Ion Transport , Kidney Tubules, Distal/cytology , Mice , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Calcium-Sensing , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...