Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
1.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617265

ABSTRACT

The rational design of the antibiotic treatment of bacterial infections employs these drugs to reach concentrations that exceed the minimum needed to prevent the replication of the target bacteria. However, within a treated patient, spatial and physiological heterogeneity promotes antibiotic gradients such that the concentration of antibiotics at specific sites is below the minimum needed to inhibit bacterial growth. Here, we investigate the effects of sub-inhibitory antibiotic concentrations on three parameters central to bacterial infection and the success of antibiotic treatment, using in vitro experiments with Staphylococcus aureus and mathematical-computer simulation models. Our results, using drugs of six different classes, demonstrate that exposure to sub-inhibitory antibiotic concentrations not only alters the dynamics of bacterial growth but also increases the mutation rate to antibiotic resistance and decreases the rate of production of persister cells thereby reducing the persistence level. Understanding this trade-off between mutation rates and persistence levels resulting from sub-inhibitory antibiotic exposure is crucial for optimizing, and mitigating the failure of, antibiotic therapy.

2.
mBio ; 15(5): e0305423, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564701

ABSTRACT

Serratia marcescens is an opportunistic pathogen historically associated with sudden outbreaks in intensive care units (ICUs) and the spread of carbapenem-resistant genes. However, the ecology of S. marcescens populations in the hospital ecosystem remains largely unknown. We combined epidemiological information of 1,432 Serratia spp. isolates collected from sinks of a large ICU that underwent demographic and operational changes (2019-2021) and 99 non-redundant outbreak/non-outbreak isolates from the same hospital (2003-2019) with 165 genomic data. These genomes were grouped into clades (1-4) and subclades (A and B) associated with distinct species: Serratia nematodiphila (1A), S. marcescens (1B), Serratia bockelmannii (2A), Serratia ureilytica (2B), S. marcescens/Serratia nevei (3), and S. nevei (4A and 4B). They may be classified into an S. marcescens complex (SMC) due to the similarity between/within subclades (average nucleotide identity >95%-98%), with clades 3 and 4 predominating in our study and publicly available databases. Chromosomal AmpC ß-lactamase with unusual basal-like expression and prodigiosin-lacking species contrasted classical features of Serratia. We found persistent and coexisting clones in sinks of subclades 4A (ST92 and ST490) and 4B (ST424), clonally related to outbreak isolates carrying blaVIM-1 or blaOXA-48 on prevalent IncL/pB77-CPsm plasmids from our hospital since 2017. The distribution of SMC populations in ICU sinks and patients reflects how Serratia species acquire, maintain, and enable plasmid evolution in both "source" (permanent, sinks) and "sink" (transient, patients) hospital patches. The results contribute to understanding how water sinks serve as reservoirs of Enterobacterales clones and plasmids that enable the persistence of carbapenemase genes in healthcare settings, potentially leading to outbreaks and/or hospital-acquired infections.IMPORTANCEThe "hospital environment," including sinks and surfaces, is increasingly recognized as a reservoir for bacterial species, clones, and plasmids of high epidemiological concern. Available studies on Serratia epidemiology have focused mainly on outbreaks of multidrug-resistant species, overlooking local longitudinal analyses necessary for understanding the dynamics of opportunistic pathogens and antibiotic-resistant genes within the hospital setting. This long-term genomic comparative analysis of Serratia isolated from the ICU environment with isolates causing nosocomial infections and/or outbreaks within the same hospital revealed the coexistence and persistence of Serratia populations in water reservoirs. Moreover, predominant sink strains may acquire highly conserved and widely distributed plasmids carrying carbapenemase genes, such as the prevalent IncL-pB77-CPsm (pOXA48), persisting in ICU sinks for years. The work highlights the relevance of ICU environmental reservoirs in the endemicity of certain opportunistic pathogens and resistance mechanisms mainly confined to hospitals.


Subject(s)
Cross Infection , Intensive Care Units , Serratia Infections , Serratia marcescens , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Serratia marcescens/classification , Serratia Infections/epidemiology , Serratia Infections/microbiology , Humans , Cross Infection/microbiology , Cross Infection/epidemiology , Disease Outbreaks , Genome, Bacterial , Hospitals , Phylogeny , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests
3.
Proc Natl Acad Sci U S A ; 121(16): e2318600121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588431

ABSTRACT

Antibiotics are considered one of the most important contributions to clinical medicine in the last century. Due to the use and overuse of these drugs, there have been increasing frequencies of infections with resistant pathogens. One form of resistance, heteroresistance, is particularly problematic; pathogens appear sensitive to a drug by common susceptibility tests. However, upon exposure to the antibiotic, resistance rapidly ascends, and treatment fails. To quantitatively explore the processes contributing to the emergence and ascent of resistance during treatment and the waning of resistance following cessation of treatment, we develop two distinct mathematical and computer-simulation models of heteroresistance. In our analysis of the properties of these models, we consider the factors that determine the response to antibiotic-mediated selection. In one model, heteroresistance is progressive, with each resistant state sequentially generating a higher resistance level. In the other model, heteroresistance is non-progressive, with a susceptible population directly generating populations with different resistance levels. The conditions where resistance will ascend in the progressive model are narrower than those of the non-progressive model. The rates of reversion from the resistant to the sensitive states are critically dependent on the transition rates and the fitness cost of resistance. Our results demonstrate that the standard test used to identify heteroresistance is insufficient. The predictions of our models are consistent with empirical results. Our results demand a reevaluation of the definition and criteria employed to identify heteroresistance. We recommend that the definition of heteroresistance should include a consideration of the rate of return to susceptibility.


Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Population Dynamics , Microbial Sensitivity Tests
4.
Biomolecules ; 14(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38254676

ABSTRACT

The acquisition and expression of antibiotic resistance implies changes in bacterial cell physiology, imposing fitness costs. Many human opportunistic pathogenic bacteria, such as those causing urinary tract or bloodstream infections, colonize the gut. In this opinionated review, we will examine the various types of stress that these bacteria might suffer during their intestinal stay. These stresses, and their compensatory responses, probably have a fitness cost, which might be additive to the cost of expressing antibiotic resistance. Such an effect could result in a disadvantage relative to antibiotic susceptible populations that might replace the resistant ones. The opinion proposed in this paper is that the effect of these combinations of fitness costs should be tested in antibiotic resistant bacteria with susceptible ones as controls. This testing might provide opportunities to increase the bacterial gut stress boosting physiological biomolecules or using dietary interventions. This approach to reduce the burden of antibiotic-resistant populations certainly must be answered empirically. In the end, the battle against antibiotic resistance should be won by antibiotic-susceptible organisms. Let us help them prevail.


Subject(s)
Anti-Bacterial Agents , Sepsis , Humans , Anti-Bacterial Agents/pharmacology , Anxiety , Drug Resistance, Microbial , Exercise
5.
Microbiol Spectr ; 12(2): e0272823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38197662

ABSTRACT

The epidemiology of sexually transmitted infections (STIs) is complex due to the coexistence of various pathogens, the variety of transmission modes derived from sexual orientations and behaviors at different ages and genders, and sexual contact hotspots resulting in network transmission. There is also a growing proportion of recreational drug users engaged in high-risk sexual activities, as well as pharmacological self-protection routines fostering non-condom practices. The frequency of asymptomatic patients makes it difficult to develop a comprehensive approach to STI epidemiology. Modeling approaches are required to deal with such complexity. Membrane computing is a natural computing methodology for the virtual reproduction of epidemics under the influence of deterministic and stochastic events with an unprecedented level of granularity. The application of the LOIMOS program to STI epidemiology illustrates the possibility of using it to shape appropriate interventions. Under the conditions of our basic landscape, including sexual hotspots of individuals with various risk behaviors, an increase in condom use reduces STIs in a larger proportion of heterosexuals than in same-gender sexual contacts and is much more efficient for reducing Neisseria gonorrhoeae than Chlamydia and lymphogranuloma venereum infections. Amelioration from diagnostic STI screening could be instrumental in reducing N. gonorrhoeae infections, particularly in men having sex with men (MSM), and Chlamydia trachomatis infections in the heterosexual population; however, screening was less effective in decreasing lymphogranuloma venereum infections in MSM. The influence of STI epidemiology of sexual contacts between different age groups (<35 and ≥35 years) and in bisexual populations was also submitted for simulation.IMPORTANCEThe epidemiology of sexually transmitted infections (STIs) is complex and significantly influences sexual and reproductive health worldwide. Gender, age, sexual orientation, sexual behavior (including recreational drug use and physical and pharmacological protection practices), the structure of sexual contact networks, and the limited application or efficiency of diagnostic screening procedures create variable landscapes in different countries. Modeling techniques are required to deal with such complexity. We propose the use of a simulation technology based on membrane computing, mimicking in silico STI epidemics under various local conditions with an unprecedented level of detail. This approach allows us to evaluate the relative weight of the various epidemic drivers in various populations at risk and the possible outcomes of interventions in particular epidemiological landscapes.


Subject(s)
Gonorrhea , HIV Infections , Lymphogranuloma Venereum , Sexual and Gender Minorities , Sexually Transmitted Diseases , Humans , Female , Male , Adult , Homosexuality, Male , Sexually Transmitted Diseases/diagnosis , Sexually Transmitted Diseases/epidemiology , Sexually Transmitted Diseases/prevention & control , Gonorrhea/epidemiology , Sexual Behavior , Risk-Taking , HIV Infections/epidemiology
6.
Nat Prod Rep ; 41(3): 469-511, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38164764

ABSTRACT

Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.


Subject(s)
Anti-Bacterial Agents , Bacteriocins , Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Bacteriocins/chemistry , Peptides/pharmacology , Peptides/chemistry , Bacteria
7.
mBio ; 15(2): e0268023, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38126752

ABSTRACT

This year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that bacteriostasis essentially reflects a distinct cellular status (or "cell variant") characterized by the inability to be killed as a consequence of an antibiotic-induced stress impacting on bacterial physiology/metabolism (growth). Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.IMPORTANCEThis year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that some antibiotics are drugs that induce bacteria to become bacteriostatic. Cells that are unable to multiply, thereby preventing the antibiotic from exerting major lethal effects on them, are a variant ("different") type of cells, bacteriostatic cells. Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Bacterial Physiological Phenomena
8.
bioRxiv ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37961139

ABSTRACT

Traditionally, bacteriostatic antibiotics are agents able to arrest bacterial growth. Despite being unable to kill bacterial cells, when they are used clinically the outcome of these drugs is frequently as effective as when a bactericidal drug is used. We explore the dynamics of Escherichia coli after exposure to two ribosome-targeting bacteriostatic antibiotics, chloramphenicol and azithromycin, for thirty days. The results of our experiments provide evidence that bacteria exposed to these drugs replicate, evolve, and generate a sub-population of small colony variants (SCVs) which are resistant to multiple drugs. These SCVs contribute to the evolution of heteroresistance and rapidly revert to a susceptible state once the antibiotic is removed. Stated another way, exposure to bacteriostatic drugs selects for the evolution of heteroresistance in populations previously lacking this trait. More generally, our results question the definition of bacteriostasis as populations exposed to bacteriostatic drugs are replicating despite the lack of net growth.

9.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37790545

ABSTRACT

Antibiotics are considered one of the most important contributions to clinical medicine in the last 100 years. Due to the use and overuse of these drugs, there have been increasing frequencies of infections with resistant pathogens. One form of resistance, heteroresistance, is particularly problematic; pathogens appear sensitive to a drug by common susceptibility tests. However, upon exposure to the antibiotic, resistance rapidly ascends, and treatment fails. To quantitatively explore the processes contributing to the emergence and ascent of resistance during treatment and the waning of resistance following cessation of treatment, we develop two distinct mathematical and computer-simulations models of heteroresistance. In our analysis of the properties of these models, we consider the factors that determine the response to antibiotic-mediated selection. In one model, heteroresistance is progressive, with each resistant state sequentially generating a higher resistance level. In the other model, heteroresistance is non-progressive, with a susceptible population directly generating populations with different resistance levels. The conditions where resistance will ascend in the progressive model are narrower than those of the non-progressive model. The rates of reversion from the resistant to the sensitive states are critically dependent on the transition rates and the fitness cost of resistance. Our results demonstrate that the standard test used to identify heteroresistance is insufficient. The predictions of our models are consistent with empirical results. Our results demand a reevaluation of the definition and criteria employed to identify heteroresistance. We recommend the definition of heteroresistance should include a consideration of the rate of return to susceptibility.

10.
Int. microbiol ; 26(3): 445-457, Ene-Agos, 2023. ilus
Article in Spanish | IBECS | ID: ibc-223972

ABSTRACT

In the field of observational and experimental natural sciences (as is the case for microbiology), recent decades have been overinfluenced by overwhelming technological advances, and the space of abstraction has been frequently disdained. However, the predictable future of biological sciences should necessarily recover the synthetic dimension of “natural philosophy.” We should understand the nature of Microbiology as Science, and we should educate microbiology scientists in the process of thinking. The critical process of thinking “knowing what we can know” is entirely based on Kant’s Critique of Pure Reason. However, this book is extremely difficult to read (even for Kant himself) and almost inaccessible to modern experimental natural scientists. Professional philosophers might have been able to explain Kant to scientists; unfortunately, however, they do not get involved this type of education for science. The intention of this review is to introduce natural scientists, particularly microbiologists and evolutionary biologists, to the main rigorous processes (aesthetics, analytics, dialectics) that Kant identified to gain access to knowledge, always a partial knowledge, given that the correspondence between truth and reality is necessarily incomplete. This goal is attempted by producing a number of “images” (figures) to help the non-expert reader grasp the essential of Kant’s message and by making final observations paralleling the theory of scientific knowledge with biological evolutionary processes and the role of evolutionary epistemology in science education. Finally, the influence of Kant’s postulates in key-fields of microbiology, from taxonomy to systems biology is discussed.(AU)


Subject(s)
Humans , Male , Female , Microbiology , Knowledge , Philosophy , Microbiology/education
11.
Microb Biotechnol ; 16(10): 1900-1923, 2023 10.
Article in English | MEDLINE | ID: mdl-37417823

ABSTRACT

As recognized by several international agencies, antibiotic resistance is nowadays one of the most relevant problems for human health. While this problem was alleviated with the introduction of new antibiotics into the market in the golden age of antimicrobial discovery, nowadays few antibiotics are in the pipeline. Under these circumstances, a deep understanding on the mechanisms of emergence, evolution and transmission of antibiotic resistance, as well as on the consequences for the bacterial physiology of acquiring resistance is needed to implement novel strategies, beyond the development of new antibiotics or the restriction in the use of current ones, to more efficiently treat infections. There are still several aspects in the field of antibiotic resistance that are not fully understood. In the current article, we make a non-exhaustive critical review of some of them that we consider of special relevance, in the aim of presenting a snapshot of the studies that still need to be done to tackle antibiotic resistance.


Subject(s)
Anti-Infective Agents , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology
12.
Trends Microbiol ; 31(9): 972-984, 2023 09.
Article in English | MEDLINE | ID: mdl-37173205

ABSTRACT

A thriving multi-kingdom microbial ecosystem inhabits the respiratory tract: the respiratory tract microbiome (RTM). In recent years, the contribution of the RTM to human health has become a crucial research aspect. However, research into the key ecological processes, such as robustness, resilience, and microbial interaction networks, has only recently started. This review leans on an ecological framework to interpret the human RTM and determine how the ecosystem functions and assembles. Specifically, the review illustrates the ecological RTM models and discusses microbiome establishment, community structure, diversity stability, and critical microbial interactions. Lastly, the review outlines the RTM responses to ecological disturbances, as well as the promising approaches for restoring ecological balance.


Subject(s)
Ecosystem , Microbiota , Humans , Ecology , Microbial Interactions , Models, Theoretical , Respiratory System
13.
Microbiol Spectr ; 11(3): e0409122, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37130356

ABSTRACT

The MIC of an antibiotic required to prevent replication is used both as a measure of the susceptibility/resistance of bacteria to that drug and as the single pharmacodynamic parameter for the rational design of antibiotic treatment regimes. MICs are experimentally estimated in vitro under conditions optimal for the action of the antibiotic. However, bacteria rarely grow in these optimal conditions. Using a mathematical model of the pharmacodynamics of antibiotics, we make predictions about the nutrient dependency of bacterial growth in the presence of antibiotics. We test these predictions with experiments in broth and a glucose-limited minimal media with Escherichia coli and eight different antibiotics. Our experiments question the sufficiency of using MICs and simple pharmacodynamic functions as measures of the pharmacodynamics of antibiotics under the nutritional conditions of infected tissues. To an extent that varies among drugs: (i) the estimated MICs obtained in rich media are greater than those estimated in minimal media; (ii) exposure to these drugs increases the time before logarithmic growth starts, their lag; and (iii) the stationary-phase density of E. coli populations declines with greater sub-MIC antibiotic concentrations. We postulate a mechanism to account for the relationship between sub-MICs of antibiotics and these growth parameters. This study is limited to a single bacterial strain and two types of culture media with different nutritive content. These limitations aside, the results of our study clearly question the use of MIC as the unique pharmacodynamic parameter to develop therapeutically oriented protocols. IMPORTANCE For studies of antibiotics and how they work, the most-often used measurement of drug efficacy is the MIC. The MIC is the concentration of an antibiotic needed to inhibit bacterial growth. This parameter is critical to the design and implementation of antibiotic therapy. We provide evidence that the use of MIC as the sole measurement for antibiotic efficacy ignores important aspects of bacterial growth dynamics. Before now, there has not been a nexus between bacteria, the conditions in which they grow, and the MIC. Most importantly, few studies have considered sub-MICs of antibiotics, despite their clinical importance. Here, we explore these concentrations in-depth, and we demonstrate MIC to be an incomplete measure of how an infection will interact with a specific antibiotic. Understanding the critiques of MIC is the first of many steps needed to improve infectious disease treatment.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Microbial Sensitivity Tests , Models, Theoretical
14.
Biology (Basel) ; 12(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37237454

ABSTRACT

Epistasis refers to the way in which genetic interactions between some genetic loci affect phenotypes and fitness. In this study, we propose the concept of "structural epistasis" to emphasize the role of the variable physical interactions between molecules located in particular spaces inside the bacterial cell in the emergence of novel phenotypes. The architecture of the bacterial cell (typically Gram-negative), which consists of concentrical layers of membranes, particles, and molecules with differing configurations and densities (from the outer membrane to the nucleoid) determines and is in turn determined by the cell shape and size, depending on the growth phases, exposure to toxic conditions, stress responses, and the bacterial environment. Antibiotics change the bacterial cell's internal molecular topology, producing unexpected interactions among molecules. In contrast, changes in shape and size may alter antibiotic action. The mechanisms of antibiotic resistance (and their vectors, as mobile genetic elements) also influence molecular connectivity in the bacterial cell and can produce unexpected phenotypes, influencing the action of other antimicrobial agents.

15.
Nat Rev Microbiol ; 21(10): 671-685, 2023 10.
Article in English | MEDLINE | ID: mdl-37208461

ABSTRACT

Antibiotic resistance is currently one of the most important public health problems. The golden age of antibiotic discovery ended decades ago, and new approaches are urgently needed. Therefore, preserving the efficacy of the antibiotics currently in use and developing compounds and strategies that specifically target antibiotic-resistant pathogens is critical. The identification of robust trends of antibiotic resistance evolution and of its associated trade-offs, such as collateral sensitivity or fitness costs, is invaluable for the design of rational evolution-based, ecology-based treatment approaches. In this Review, we discuss these evolutionary trade-offs and how such knowledge can aid in informing combination or alternating antibiotic therapies against bacterial infections. In addition, we discuss how targeting bacterial metabolism can enhance drug activity and impair antibiotic resistance evolution. Finally, we explore how an improved understanding of the original physiological function of antibiotic resistance determinants, which have evolved to reach clinical resistance after a process of historical contingency, may help to tackle antibiotic resistance.


Subject(s)
Bacterial Infections , Humans , Drug Resistance, Microbial/genetics , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Biology , Drug Resistance, Bacterial
16.
Microorganisms ; 11(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37110473

ABSTRACT

Antimicrobial resistance (AMR) is one of the Global Health challenges of the 21st century. The inclusion of AMR on the global map parallels the scientific, technological, and organizational progress of the healthcare system and the socioeconomic changes of the last 100 years. Available knowledge about AMR has mostly come from large healthcare institutions in high-income countries and is scattered in studies across various fields, focused on patient safety (infectious diseases), transmission pathways and pathogen reservoirs (molecular epidemiology), the extent of the problem at a population level (public health), their management and cost (health economics), cultural issues (community psychology), and events associated with historical periods (history of science). However, there is little dialogue between the aspects that facilitate the development, spread, and evolution of AMR and various stakeholders (patients, clinicians, public health professionals, scientists, economic sectors, and funding agencies). This study consists of four complementary sections. The first reviews the socioeconomic factors that have contributed to building the current Global Healthcare system, the scientific framework in which AMR has traditionally been approached in such a system, and the novel scientific and organizational challenges of approaching AMR in the fourth globalization scenario. The second discusses the need to reframe AMR in the current public health and global health contexts. Given that the implementation of policies and guidelines are greatly influenced by AMR information from surveillance systems, in the third section, we review the unit of analysis ("the what" and "the who") and the indicators (the "operational units of surveillance") used in AMR and discuss the factors that affect the validity, reliability, and comparability of the information to be applied in various healthcare (primary, secondary, and tertiary), demographic, and economic contexts (local, regional, global, and inter-sectorial levels). Finally, we discuss the disparities and similarities between distinct stakeholders' objectives and the gaps and challenges of combatting AMR at various levels. In summary, this is a comprehensive but not exhaustive revision of the known unknowns about how to analyze the heterogeneities of hosts, microbes, and hospital patches, the role of surrounding ecosystems, and the challenges they represent for surveillance, antimicrobial stewardship, and infection control programs, which are the traditional cornerstones for controlling AMR in human health.

17.
Trends Microbiol ; 31(6): 559-570, 2023 06.
Article in English | MEDLINE | ID: mdl-36720668

ABSTRACT

Humans have inundated the environment worldwide with antimicrobials for about one century, giving selective advantage to antibiotic-resistant bacteria. Therefore, antibiotic resistance has become a public health problem responsible for increased mortality and extended hospital stays because the efficacy of antibiotics has diminished. Hospitals and other clinical settings have implemented stewardship measures to reduce antibiotic administration and prescription. However, these measures demand multifactorial approaches, including multidisciplinary teams in clinical settings and the education of professionals and patients. Recent studies indicate that individual factors, such as mother-infant attachment and parenting styles, play a critical role in antibiotic use. Also, macrocontextual factors, such as economic, social, or cultural backgrounds, may impact antibiotic use rates. Therefore, research aiming to ameliorate stewardship measures must include psychologically and sociologically based research.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Female , Humans , Anti-Bacterial Agents/therapeutic use , Hospitals , Drug Resistance, Microbial , Mothers
18.
Int Microbiol ; 26(3): 445-457, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36562899

ABSTRACT

In the field of observational and experimental natural sciences (as is the case for microbiology), recent decades have been overinfluenced by overwhelming technological advances, and the space of abstraction has been frequently disdained. However, the predictable future of biological sciences should necessarily recover the synthetic dimension of "natural philosophy." We should understand the nature of Microbiology as Science, and we should educate microbiology scientists in the process of thinking. The critical process of thinking "knowing what we can know" is entirely based on Kant's Critique of Pure Reason. However, this book is extremely difficult to read (even for Kant himself) and almost inaccessible to modern experimental natural scientists. Professional philosophers might have been able to explain Kant to scientists; unfortunately, however, they do not get involved this type of education for science. The intention of this review is to introduce natural scientists, particularly microbiologists and evolutionary biologists, to the main rigorous processes (aesthetics, analytics, dialectics) that Kant identified to gain access to knowledge, always a partial knowledge, given that the correspondence between truth and reality is necessarily incomplete. This goal is attempted by producing a number of "images" (figures) to help the non-expert reader grasp the essential of Kant's message and by making final observations paralleling the theory of scientific knowledge with biological evolutionary processes and the role of evolutionary epistemology in science education. Finally, the influence of Kant's postulates in key-fields of microbiology, from taxonomy to systems biology is discussed.


Subject(s)
Knowledge , Philosophy
19.
Front Microbiol ; 13: 1062399, 2022.
Article in English | MEDLINE | ID: mdl-36504820

ABSTRACT

The extended concept of one health integrates biological, geological, and chemical (bio-geo-chemical) components. Anthropogenic antibiotics are constantly and increasingly released into the soil and water environments. The fate of these drugs in the thin Earth space ("critical zone") where the biosphere is placed determines the effect of antimicrobial agents on the microbiosphere, which can potentially alter the composition of the ecosystem and lead to the selection of antibiotic-resistant microorganisms including animal and human pathogens. However, soil and water environments are highly heterogeneous in their local composition; thus the permanence and activity of antibiotics. This is a case of "molecular ecology": antibiotic molecules are adsorbed and eventually inactivated by interacting with biotic and abiotic molecules that are present at different concentrations in different places. There are poorly explored aspects of the pharmacodynamics (PD, biological action) and pharmacokinetics (PK, rates of decay) of antibiotics in water and soil environments. In this review, we explore the various biotic and abiotic factors contributing to antibiotic detoxification in the environment. These factors range from spontaneous degradation to the detoxifying effects produced by clay minerals (forming geochemical platforms with degradative reactions influenced by light, metals, or pH), charcoal, natural organic matter (including cellulose and chitin), biodegradation by bacterial populations and complex bacterial consortia (including "bacterial subsistence"; in other words, microbes taking antibiotics as nutrients), by planktonic microalgae, fungi, plant removal and degradation, or sequestration by living and dead cells (necrobiome detoxification). Many of these processes occur in particulated material where bacteria from various origins (microbiota coalescence) might also attach (microbiotic particles), thereby determining the antibiotic environmental PK/PD and influencing the local selection of antibiotic resistant bacteria. The exploration of this complex field requires a multidisciplinary effort in developing the molecular ecology of antibiotics, but could result in a much more precise determination of the one health hazards of antibiotic production and release.

20.
Foods ; 11(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35892780

ABSTRACT

In this work, the thermal degradation of tropane and opium alkaloids was studied in samples of breadsticks prepared with corn flour, contaminated with seeds of Datura stramonium, and containing seeds of Papaver somniferum L. A total of seven different samples were prepared and eight alkaloids were studied, three tropane (atropine, scopolamine, and anisodamine) and five opium (morphine, codeine, thebaine, papaverine, and noscapine) alkaloids. For this purpose, a fast, easy and efficient method based on solid-liquid extraction (SLE) prior to the analysis by high-performance liquid chromatography with a diode array detector (HPLC-DAD) was developed and validated. Thermal degradation studies showed a decrease in the TAs and OAs content under baking (180 °C for 20 min) that was between 7-65% for atropine, depending on the preparation conditions used, between 35-49% for scopolamine and anisodamine, up to 100% for morphine and codeine and between 14-58% for thebaine, papaverine, and noscapine. Results also evidenced that degradation of morphine and codeine was higher when the seeds were added as topping to the breadsticks.

SELECTION OF CITATIONS
SEARCH DETAIL
...