Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 57(2): 463-476, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31670811

ABSTRACT

Skin irritation has been reported to be the main adverse effect of excessive use of N,N-diethyl-m-toluamide (DEET) and ethyl 3-acetyl(butyl)amino (IR3535) commercial repellents. Therefore, there is an interest in alternatives of natural origin such as essential oils (EOs) and major compounds, which have repellent effects but have no contraindications. The main purpose of the present study was to identify the repellent effect of selected terpenes on Aedes aegypti Linnaeus, 1762 (Diptera: Culicidae) by in silico analysis based on their affinity with the odorant protein AaegOBP1. The protein-metabolite interactions in 20 terpenes were analyzed using the SwissDock tool. Terpenes presenting the highest affinity compared with commercial repellents were selected to evaluate repellent activity at concentrations 0.1, 10, and 25% against Ae. aegypti. Different periods (0-2, 2-15, 15-60 min) were evaluated with DEET as a positive control. The toxicity of terpenes was verified through Osiris and Molinspiration Cheminformatics Software, and cytotoxicity assays in Vero and HepaRG cells were performed using the MTT method. Two formulations were prepared with polyethylene glycol to evaluate skin long-lasting in vivo assay. The results showed four terpenes: geranyl acetate, nerolidol, α-bisabolol, and nerol, with affinity to AaegOBP1 comparable with DEET and IR3535. Geranyl acetate, nerolidol, and their mixtures showed no cytotoxicity and protection percentages close to 100% during the test at concentrations 10 and 25%. Long-lasting assays with geranyl acetate and nerolidol formulate showed 3 h as maximum protection time with 100% protection percentage. These metabolites and their mixtures are candidates to repellent formulations with times and protection percentages similar to DEET.


Subject(s)
Aedes/drug effects , Insect Proteins/metabolism , Insect Repellents/chemistry , Receptors, Odorant/metabolism , Aedes/metabolism , Animals , Computer Simulation , Drug Design , Female , Insect Repellents/pharmacology
2.
J Agric Food Chem ; 67(33): 9210-9219, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31390203

ABSTRACT

The insecticidal and antifeedant activities of five 7-chloro-4-(1H-1,2,3-triazol-1-yl)quinoline derivatives were evaluated against the maize armyworm, Spodoptera frugiperda (J.E. Smith). These hybrids were prepared through a copper-catalyzed azide alkyne cycloaddition (CuAAC, known as a click reaction) and displayed larvicidal properties with LD50 values below 3 mg/g insect, and triazolyl-quinoline hybrid 6 showed an LD50 of 0.65 mg/g insect, making it 2-fold less potent than methomyl, which was used as a reference insecticide (LD50 = 0.34 mg/g insect). Compound 4 was the most active antifeedant derivative (CE50 = 162.1 µg/mL) with a good antifeedant index (56-79%) at concentrations of 250-1000 µg/mL. Additionally, triazolyl-quinoline hybrids 4-8 exhibited weak inhibitory activity against commercial acetylcholinesterase from Electrophorus electricus (electric-eel AChE) (IC50 = 27.7 µg/mL) as well as low anti-ChE activity on S. frugiperda larvae homogenate (IC50 = 68.4 µg/mL). Finally, molecular docking simulations suggested that hybrid 7 binds to the catalytic active site (CAS) of this enzyme and around the rim of the enzyme cavity, acting as a mixed (competitive and noncompetitive) inhibitor like methomyl. Triazolyl-quinolines 4-6 and 8 inhibit AChE by binding over the perimeter of the enzyme cavity, functioning as noncompetitive inhibitors. The results described in this work can help to identify lead triazole structures from click chemistry for the development of insecticide and deterrent products against S. frugiperda and related insect pests.


Subject(s)
Insecticides/chemical synthesis , Insecticides/pharmacology , Larva/drug effects , Quinolines/chemistry , Quinolines/pharmacology , Spodoptera/drug effects , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Animals , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Click Chemistry , Computer Simulation , Insect Proteins/antagonists & inhibitors , Insect Proteins/chemistry , Insect Proteins/metabolism , Insecticides/chemistry , Larva/enzymology , Larva/growth & development , Molecular Docking Simulation , Plant Diseases/parasitology , Spodoptera/enzymology , Spodoptera/growth & development , Zea mays/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...