Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Antimicrob Agents Chemother ; : e0161023, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687017

ABSTRACT

Efficient treatment of anthrax-related meningitis in patients poses a significant therapeutic challenge. Previously, we demonstrated in our anthrax meningitis rabbit model that ciprofloxacin treatment is ineffective with most of the treated animals succumbing to the infection. Herein we tested the efficacy of doxycycline in our rabbit model and found it highly effective. Since all of our findings are based on a rabbit model, we test the efficacy of ciprofloxacin or doxycycline in a specific central nervous system (CNS) model developed in non-human primates (NHPs). Similar to rabbits, ciprofloxacin treatment was ineffective, while doxycycline protected the infected rhesus macaques (n = 2) from the lethal CNS Bacillus anthracis infection. To test whether the low efficacy of Ciprofloxacin is an example of low efficacy of all fluoroquinolones or only this substance, we treated rabbits that were inoculated intracisterna magna (ICM) with levofloxacin or moxifloxacin. We found that in contrast to ciprofloxacin, levofloxacin and moxifloxacin were highly efficacious in treating lethal anthrax-related meningitis in rabbits and NHP (levofloxacin). We demonstrated (in naïve rabbits) that this difference probably results from variances in blood-brain-barrier penetration of the different fluoroquinolones. The combined treatment of doxycycline and any one of the tested fluoroquinolones was highly effective in the rabbit CNS infection model. The combined treatment of doxycycline and levofloxacin was effective in an inhalation rabbit model, as good as the doxycycline mono-therapy. These findings imply that while ciprofloxacin is highly effective as a post-exposure prophylactic drug, using this drug to treat symptomatic patients should be reconsidered.

2.
Science ; 382(6671): eabo7201, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37943932

ABSTRACT

We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property-free knowledge base for future anticoronavirus drug discovery.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Coronavirus Protease Inhibitors , Drug Discovery , SARS-CoV-2 , Humans , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Molecular Docking Simulation , Coronavirus Protease Inhibitors/chemical synthesis , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/pharmacology , Structure-Activity Relationship , Crystallography, X-Ray
3.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176034

ABSTRACT

We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.


Subject(s)
Alkaloids , COVID-19 , Nuphar , Mice , Animals , SARS-CoV-2 , Nuphar/chemistry , Alkaloids/pharmacology , Alkaloids/therapeutic use , Alkaloids/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice, Transgenic
4.
PLoS One ; 18(2): e0281879, 2023.
Article in English | MEDLINE | ID: mdl-36795682

ABSTRACT

Bacillus anthracis overcomes host immune responses by producing capsule and secreting toxins. Production of these virulence factors in response to entering the host environment was shown to be regulated by atxA, the major virulence regulator, known to be activated by HCO3- and CO2. While toxin production is regulated directly by atxA, capsule production is independently mediated by two regulators; acpA and acpB. In addition, it was demonstrated that acpA has at least two promotors, one of them shared with atxA. We used a genetic approach to study capsule and toxin production under different conditions. Unlike previous works utilizing NBY, CA or R-HCO3- medium under CO2 enriched conditions, we used a sDMEM-based medium. Thus, toxin and capsule production can be induced in ambient or CO2 enriched atmosphere. Using this system, we could differentiate between induction by 10% NRS, 10% CO2 or 0.75% HCO3-. In response to high CO2, capsule production is induced by acpA based response in an atxA-independent manner, with little to no toxin (protective antigen PA) production. atxA based response is activated in response to serum independently of CO2, inducing toxin and capsule production in an acpA or acpB dependent manner. HCO3- was also found to activate atxA based response, but in non-physiological concentrations. Our findings may help explain the first stages of inhalational infection, in which spores germinating in dendritic cells require protection (by encapsulation) without affecting cell migration to the draining lymph-node by toxin secretion.


Subject(s)
Bacillus anthracis , Bacterial Toxins , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Carbon Dioxide/pharmacology , Gene Expression Regulation, Bacterial , Antigens, Bacterial/genetics
5.
Nucleic Acids Res ; 50(14): 8080-8092, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35849342

ABSTRACT

Translation of SARS-CoV-2-encoded mRNAs by the host ribosomes is essential for its propagation. Following infection, the early expressed viral protein NSP1 binds the ribosome, represses translation, and induces mRNA degradation, while the host elicits an anti-viral response. The mechanisms enabling viral mRNAs to escape this multifaceted repression remain obscure. Here we show that expression of NSP1 leads to destabilization of multi-exon cellular mRNAs, while intron-less transcripts, such as viral mRNAs and anti-viral interferon genes, remain relatively stable. We identified a conserved and precisely located cap-proximal RNA element devoid of guanosines that confers resistance to NSP1-mediated translation inhibition. Importantly, the primary sequence rather than the secondary structure is critical for protection. We further show that the genomic 5'UTR of SARS-CoV-2 drives cap-independent translation and promotes expression of NSP1 in an eIF4E-independent and Torin1-resistant manner. Upon expression, NSP1 further enhances cap-independent translation. However, the sub-genomic 5'UTRs are highly sensitive to eIF4E availability, rendering viral propagation partially sensitive to Torin1. We conclude that the combined NSP1-mediated degradation of spliced mRNAs and translation inhibition of single-exon genes, along with the unique features present in the viral 5'UTRs, ensure robust expression of viral mRNAs. These features can be exploited as potential therapeutic targets.


Subject(s)
SARS-CoV-2 , Viral Nonstructural Proteins , 5' Untranslated Regions , Base Sequence , COVID-19/virology , Eukaryotic Initiation Factor-4E/genetics , Humans , Protein Biosynthesis , RNA Caps/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics
6.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Article in English | MEDLINE | ID: mdl-35032184

ABSTRACT

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Subject(s)
COVID-19 Vaccines/toxicity , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Cricetinae , Female , Membrane Glycoproteins/genetics , Mesocricetus , Mice , Mice, Inbred C57BL , Rabbits , Swine , Vaccination , Vaccines, Synthetic/toxicity , Viral Envelope Proteins/genetics
7.
Microbiol Spectr ; 9(2): e0087021, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34612689

ABSTRACT

The first case of SARS-CoV-2 was discovered in Israel in late February 2020. Three major outbreaks followed, resulting in over 800,000 cases and over 6,000 deaths by April 2021. Our aim was characterization of a serological snapshot of Israeli patients and healthy adults in the early months of the COVID-19 pandemic. Sera from 55 symptomatic COVID-19 patients and 146 healthy subjects (early-pandemic, reverse transcription-quantitative PCR [qRT-PCR]-negative), collected in Israel between March and April 2020, were screened for SARS-CoV-2-specific IgG, IgM, and IgA antibodies, using a 6-plex antigen microarray presenting the whole inactivated virus and five viral antigens: a stabilized version of the spike ectodomain (S2P), spike subunit 1 (S1), receptor-binding-domain (RBD), N-terminal-domain (NTD), and nucleocapsid (NC). COVID-19 patients, 4 to 40 days post symptom onset, presented specific IgG to all of the viral antigens (6/6) in 54 of the 55 samples (98% sensitivity). Specific IgM and IgA antibodies for all six antigens were detected in only 10% (5/55) and 4% (2/55) of the patients, respectively, suggesting that specific IgG is a superior serological marker for COVID-19. None of the qRT-PCR-negative sera reacted with all six viral antigens (100% specificity), and 48% (70/146) were negative throughout the panel. Our findings confirm a low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population prior to the COVID-19 outbreak. We further suggest that the presence of low-level cross-reacting antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals. IMPORTANCE A 6-plex protein array presenting the whole inactivated virus and five nucleocapsid and spike-derived SARS-CoV-2 antigens was used to generate a serological snapshot of SARS-CoV-2 seroprevalence and seroconversion in Israel in the early months of the pandemic. Our findings confirm a very low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population. We further propose that the presence of low-level nonspecific antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals enabling accurate determination of seroconversion. The developed assay is currently applied to evaluate immune responses to the Israeli vaccine during human phase I/II trials.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/epidemiology , Microarray Analysis/methods , SARS-CoV-2/immunology , Adult , Aged , Antigens, Viral/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoassay/methods , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Israel/epidemiology , Male , Middle Aged , Phosphoproteins/immunology , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
8.
Microorganisms ; 9(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068310

ABSTRACT

Rapid determination of bacterial antibiotic susceptibility is important for proper treatment of infections. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) has recently published guidelines for rapid antimicrobial susceptibility testing (RAST) performed directly from positive blood culture vials. These guidelines, however, were only published for a limited number of common pathogenic bacteria. In this study, we evaluated the applicability of these guidelines to three Tier 1 bioterror agents (Bacillus anthracis, Yersinia pestis and Francisella tularensis) that require prompt antibiotic treatment to mitigate morbidity and mortality. We used spiked-in human blood incubated in a BACTEC™ FX40 system to determine the proper conditions for RAST using disc-diffusion and Etest assays. We found that reliable disc-diffusion inhibition diameters and Etest MIC values could be obtained in remarkably short times. Compared to the EUCAST-recommended disc-diffusion assays that will require adjusted clinical breakpoint tables, Etest-based RAST was advantageous, as the obtained MIC values were similar to the standard MIC values, enabling the use of established category breakpoint tables. Our results demonstrate the promising applicability of the EUCAST RAST for B. anthracis-, Y. pestis- or F. tularensis-positive blood cultures, which can lead to shorter diagnostics and prompt antibiotic treatment of these dangerous pathogens.

9.
Microb Pathog ; 155: 104904, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33930422

ABSTRACT

The poly- δ- d-glutamic acid capsule of Bacillus anthracis plays a major role in this bacterium pathogenicity. Capsule synthesis relies on a 5 gene operon; capB, C, A, D and E that are regulated by acpA and acpB, that respond to the major virulence regulator - atxA. We took a genetic approach to examine the involvement of acpA and acpB in capsule production in vitro and on B. anthracis virulence in vivo. To complement the effect of the mutations on capsule accumulation in vitro, we applied our toxin independent systemic infection method to study their effects in vivo. We found that though the roles of acpA and axpB are redundant in vitro, deleting acpA had a significant effect on pathogenicity, mainly on the time to death. As expected, deletion of both acpA and acpB resulted in loss of capsule accumulation in vitro and full attenuation in vivo, indicating that capsule production depends exclusively on acpA/B regulation. To identify additional effects of acpA and acpB on pathogenicity via non-capsule related virulence pathways, we bypassed acpA/B regulation by inserting the pagA promotor upstream to the cap operon, diverting regulation directly to atxA. This resulted in restoration of capsule accumulation in vitro and virulence (in intravenous or subcutaneous inoculation) in vivo. To test for additional pXO2-based genes involved in capsule production, we cloned the pagAprom-capA-E into the chromosome of VollumΔpXO2, which restored capsule accumulation. These results indicate that of the pXO2 genes, only capA-E and acpA are required for capsule production.


Subject(s)
Bacillus anthracis , Animals , Bacillus anthracis/genetics , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Rabbits , Trans-Activators/genetics , Virulence
10.
Anal Bioanal Chem ; 413(13): 3501-3510, 2021 May.
Article in English | MEDLINE | ID: mdl-33768365

ABSTRACT

Public health experts emphasize the need for quick, point-of-care SARS-CoV-2 detection as an effective strategy for controlling virus spread. To this end, many "antigen" detection devices were developed and commercialized. These devices are mostly based on detecting SARS-CoV-2's nucleocapsid protein. Recently, alerts issued by both the FDA and the CDC raised concerns regarding the devices' tendency to exhibit false positive results. In this work, we developed a novel alternative spike-based antigen assay, comprising four high-affinity, specific monoclonal antibodies, directed against different epitopes on the spike's S1 subunit. The assay's performance was evaluated for COVID-19 detection from nasopharyngeal swabs, compared to an in-house nucleocapsid-based assay, composed of novel antibodies directed against the nucleocapsid. Detection of COVID-19 was carried out in a cohort of 284 qRT-PCR positive and negative nasopharyngeal swab samples. The time resolved fluorescence (TRF) ELISA spike assay displayed very high specificity (99%) accompanied with a somewhat lower sensitivity (66% for Ct < 25), compared to the nucleocapsid ELISA assay which was more sensitive (85% for Ct < 25) while less specific (87% specificity). Despite being outperformed by qRT-PCR, we suggest that there is room for such tests in the clinical setting, as cheap and rapid pre-screening tools. Our results further suggest that when applying antigen detection, one must consider its intended application (sensitivity vs specificity), taking into consideration that the nucleocapsid might not be the optimal target. In this regard, we propose that a combination of both antigens might contribute to the validity of the results. Schematic representation of sample collection and analysis. The figure was created using BioRender.com.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , Enzyme-Linked Immunosorbent Assay/methods , Humans , Phosphoproteins/analysis , Sensitivity and Specificity , Specimen Handling
11.
Nat Commun ; 11(1): 6402, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328475

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and  alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Body Weight , COVID-19/virology , Cell Line , Cricetinae , Disease Models, Animal , Dose-Response Relationship, Immunologic , Genome, Viral , Lung/pathology , Lung/virology , Mice, Inbred C57BL , Mutation/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/ultrastructure , Vaccination , Viral Load
12.
Clin Microbiol Infect ; 26(12): 1658-1662, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32919072

ABSTRACT

OBJECTIVES: Environmental surfaces have been suggested as likely contributors in the transmission of COVID-19. This study assessed the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contaminating surfaces and objects in two hospital isolation units and a quarantine hotel. METHODS: SARS-CoV-2 virus stability and infectivity on non-porous surfaces was tested under controlled laboratory conditions. Surface and air sampling were conducted at two COVID-19 isolation units and in a quarantine hotel. Viral RNA was detected by RT-PCR and infectivity was assessed by VERO E6 CPE test. RESULTS: In laboratory-controlled conditions, SARS-CoV-2 gradually lost its infectivity completely by day 4 at ambient temperature, and the decay rate of viral viability on surfaces directly correlated with increase in temperature. Viral RNA was detected in 29/55 surface samples (52.7%) and 16/42 surface samples (38%) from the surroundings of symptomatic COVID-19 patients in isolation units of two hospitals and in a quarantine hotel for asymptomatic and very mild COVID-19 patients. None of the surface and air samples from the three sites (0/97) were found to contain infectious titres of SARS-Cov-2 on tissue culture assay. CONCLUSIONS: Despite prolonged viability of SARS-CoV-2 under laboratory-controlled conditions, uncultivable viral contamination of inanimate surfaces might suggest low feasibility for indirect fomite transmission.


Subject(s)
COVID-19/transmission , Fomites/virology , Hospitals, Isolation/statistics & numerical data , Housing/statistics & numerical data , Microbial Viability , SARS-CoV-2/isolation & purification , COVID-19/virology , Humans , RNA, Viral/isolation & purification , Surface Properties , Temperature
13.
PLoS One ; 15(2): e0228917, 2020.
Article in English | MEDLINE | ID: mdl-32053632

ABSTRACT

As Bacillus anthracis spores pose a proven bio-terror risk, the treatment focus has shifted from exposed populations to anthrax patients and the need for effective antibiotic treatment protocols increases. The CDC recommends carbapenems and Linezolid (oxazolidinone), for the treatment of anthrax, particularly for the late, meningeal stages of the disease. Previously we demonstrated that treatment with Meropenem or Linezolid, either as a single treatment or in combination with Ciprofloxacin, fails to protect rabbits from anthrax-meningitis. In addition, we showed that the failure of Meropenem was due to slow BBB penetration rather than low antibacterial activity. Herein, we tested the effect of increasing the dose of the antibiotic on treatment efficacy. We found that for full protection (88% cure rate) the dose should be increased four-fold from 40 mg/kg to 150 mg/kg. In addition, B. anthracis is a genetically stable bacterium and naturally occurring multidrug resistant B. anthracis strains have not been reported. In this manuscript, we report the efficacy of classical ß-lactams as a single treatment or in combination with ß-lactamase inhibitors in treating anthrax meningitis. We demonstrate that Ampicillin based treatment of anthrax meningitis is largely efficient (66%). The high efficacy (88-100%) of Augmentin (Amoxicillin and Clavulonic acid) and Unasyn (Ampicillin and Sulbactam) makes them a favorable choice due to reports of ß-lactam resistant B. anthracis strains. Tazocin (Piperacillin and Tazobactam) proved inefficient compared to the highly efficient Augmentin and Unasyn.


Subject(s)
Anthrax/drug therapy , Bacillus anthracis/drug effects , beta-Lactams/pharmacology , Amoxicillin-Potassium Clavulanate Combination/therapeutic use , Ampicillin/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Bacillus anthracis/metabolism , Bacillus anthracis/pathogenicity , Bacteria/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Meropenem/pharmacology , Microbial Sensitivity Tests , Piperacillin, Tazobactam Drug Combination/therapeutic use , Rabbits , Sulbactam/therapeutic use , beta-Lactamase Inhibitors/therapeutic use , beta-Lactams/metabolism
14.
Toxins (Basel) ; 10(12)2018 12 01.
Article in English | MEDLINE | ID: mdl-30513757

ABSTRACT

Nonencapsulated (∆pXO2) Bacillus anthracis strains are commonly used as vaccines and for anthrax research, mainly in the mouse model. Previously, we demonstrated that the infection of rabbits, intranasally or subcutaneously, with the spores of a fully virulent strain results in the systemic dissemination of the bacteria, meningitis, and death, whereas ∆pXO2 strains are fully attenuated in this animal model. We used the intravenous inoculation of rabbits to study the pathogenicity of the ∆pXO2 strain infection. Bacteremia, brain bacterial burden, and pathology were used as criteria to compare the Vollum∆pXO2 disease to the wild type Vollum infection. To test the role of adhesion in the virulence of Vollum∆pXO2, we deleted the major adhesion protein BslA and tested the virulence and immunogenicity of this mutant. We found that 50% of the rabbits succumb to Vollum∆pXO2 strain following i.v. infection, a death that was accompanied with significant neurological symptoms. Pathology revealed severe brain infection coupled with an atypical massive bacterial growth into the parenchyma. Contrary to the Vollum strain, deletion of the bslA gene fully attenuated the ∆pXO2 strain. Though the Vollum∆pXO2 cannot serve as a model for B. anthracis pathogenicity in rabbits, deletion of the bslA gene prevents central nervous system (CNS) infections, possibly leading to the generation of a safer vaccine.


Subject(s)
Anthrax/prevention & control , Bacillus anthracis/physiology , Bacterial Adhesion , Bacterial Proteins/genetics , Vaccines, Attenuated/therapeutic use , Animals , Anthrax/microbiology , Anthrax/pathology , Bacillus anthracis/pathogenicity , Brain/microbiology , Brain/pathology , Cells, Cultured , Endothelial Cells/physiology , Female , Mutation , Rabbits
15.
Article in English | MEDLINE | ID: mdl-29661872

ABSTRACT

Treatment of anthrax is challenging, especially during the advanced stages of the disease. Recently, the Centers for Disease Control and Prevention (CDC) updated its recommendations for postexposure prophylaxis and treatment of exposed populations (before and after symptom onset). These recommendations distinguished, for the first time, between systemic disease with and without meningitis, a common and serious complication of anthrax. The CDC considers all systemic cases meningeal unless positively proven otherwise. The treatment of patients suffering from systemic anthrax with suspected or confirmed meningitis includes the combination of three antibiotics, i.e., a fluoroquinolone (levofloxacin or ciprofloxacin), a ß-lactam (meropenem or imipenem), and a protein synthesis inhibitor (linezolid or clindamycin). In addition, treatment with an antitoxin (anti-protective antigen antibodies) and dexamethasone should be applied. Since the efficacy of most of these treatments has not been demonstrated, especially in animal meningitis models, we developed an anthrax meningitis model in rabbits and tested several of these recommendations. We demonstrated that, in this model, ciprofloxacin, linezolid, and meropenem were ineffective as single treatments, while clindamycin was highly effective. Furthermore, combined treatments of ciprofloxacin and linezolid or ciprofloxacin and dexamethasone failed in treating rabbits with meningitis. We demonstrated that dexamethasone actually hindered blood-brain barrier penetration by antibiotics, reducing the effectiveness of antibiotic treatment of anthrax meningitis in this rabbit model.


Subject(s)
Anthrax/drug therapy , Anti-Bacterial Agents/therapeutic use , Antitoxins/therapeutic use , Bacillus anthracis/drug effects , Meningitis, Bacterial/drug therapy , Animals , Anthrax/pathology , Central Nervous System/microbiology , Central Nervous System/pathology , Ciprofloxacin/therapeutic use , Clindamycin/therapeutic use , Dexamethasone/therapeutic use , Disease Models, Animal , Drug Combinations , Imipenem/therapeutic use , Levofloxacin/therapeutic use , Linezolid/therapeutic use , Meningitis, Bacterial/microbiology , Meningitis, Bacterial/pathology , Meropenem/therapeutic use , Rabbits , Treatment Failure
16.
J Clin Microbiol ; 56(4)2018 04.
Article in English | MEDLINE | ID: mdl-29386263

ABSTRACT

Multiplexed detection technologies are becoming increasingly important given the possibility of bioterrorism attacks, for which the range of suspected pathogens can vary considerably. In this work, we describe the use of Luminex MagPlex magnetic microspheres for the construction of two multiplexed diagnostic suspension arrays, enabling antibody-based detection of bacterial pathogens and their related disease biomarkers directly from blood cultures. The first 4-plex diagnostic array enabled the detection of both anthrax and plague infections using soluble disease biomarkers, including protective antigen (PA) and anthrax capsular antigen for anthrax detection and the capsular F1 and LcrV antigens for plague detection. The limits of detection (LODs) ranged between 0.5 and 5 ng/ml for the different antigens. The second 2-plex diagnostic array facilitated the detection of Yersinia pestis (LOD of 1 × 106 CFU/ml) and Francisella tularensis (LOD of 1 × 104 CFU/ml) from blood cultures. Inoculated, propagated blood cultures were processed (15 to 20 min) via 2 possible methodologies (Vacutainer or a simple centrifugation step), allowing the direct detection of bacteria in each sample, and the entire assay could be performed in 90 min. While detection of bacteria and soluble markers from blood cultures using PCR Luminex suspension arrays has been widely described, to our knowledge, this study is the first to demonstrate the utility of the Luminex system for the immunodetection of both bacteria and soluble markers directly from blood cultures. Targeting both the bacterial pathogens as well as two different disease biomarkers for each infection, we demonstrated the benefit of the multiplexed developed assays for enhanced, reliable detection. The presented arrays could easily be expanded to include antibodies for the detection of other pathogens of interest in hospitals or labs, demonstrating the applicability of this technology for the accurate detection and confirmation of a wide range of potential select agents.


Subject(s)
Anthrax/diagnosis , Blood Culture/methods , Plague/diagnosis , Protein Array Analysis/methods , Tularemia/diagnosis , Anthrax/blood , Anthrax/immunology , Antibodies, Bacterial/blood , Antigens, Bacterial/blood , Bacillus anthracis/genetics , Bacillus anthracis/immunology , Bacillus anthracis/isolation & purification , Biomarkers/blood , Bioterrorism , Francisella tularensis/genetics , Francisella tularensis/immunology , Francisella tularensis/isolation & purification , Humans , Magnets , Microspheres , Plague/blood , Plague/immunology , Polymerase Chain Reaction , Protein Array Analysis/instrumentation , Sensitivity and Specificity , Tularemia/blood , Tularemia/immunology , Yersinia pestis/genetics , Yersinia pestis/immunology , Yersinia pestis/isolation & purification
17.
PLoS One ; 12(10): e0186613, 2017.
Article in English | MEDLINE | ID: mdl-29088287

ABSTRACT

Hemorrhagic meningitis is considered a complication of anthrax and was reported in about 50% of deadly cases in humans and non-human primates (NHP). Recently we demonstrated in Guinea pigs and rabbits that 100% of the B. anthracis-infected animals presented histopathology of meningitis at the time of death, some without any sign of hemorrhage. A similar pathology was observed in animals that succumbed following infection with the toxin deficient mutant, thus indicating that anthrax meningitis is a toxin-independent phenomenon. In this manuscript we describe a histopathological study of the B. anthracis infection of the central nervous system (CNS). Though we could find sporadic growth of the bacteria around blood vessels in the cortex, we report that the main infiltration route is the choroid plexus. We found massive destruction of entire sections of the choroid plexus coupled with massive aggregation of bacilli in the ventricles, in close proximity to the parenchyma. The choroid plexus also contained significant amounts of intravascular bacterial aggregates, often enclosed in what appear to be fibrin-like clots. The high concentration of these aggregates in areas of significant tissue destruction combined with the fact that capsular B. anthracis bacteria have a low tendency to adhere to endothelial cells, might suggest that these clots are used as an adherence mechanism by the bacteria. The major histopathological finding is meningitis. We find massive bacterial growth in the meninges without evidence of encephalitis, even when the bacteria emerge from a parenchymal blood vessel. Erythrocytes were present within the meningeal space but no clear vasculitis could be detected. Histology of the brain stem indicates meningitis, edema and hemorrhages that might explain death from suffocation due to direct damage to the respiratory center. All of these processes are toxin-independent, since they were observed following infection with either the wild type strain or the toxin-deficient mutant. Herein, we propose that the first step of anthrax-meningitis is bacterial adhesion to the blood vessels by manipulating coagulation, mainly in the choroid plexus. The trapped bacteria then destroy sections of the choroid plexus, resulting in penetration into the CSF, leading to meningitis and hemorrhage. Death could be the result of increased intracranial pressure and/or damage to the brain stem.


Subject(s)
Bacillus anthracis/pathogenicity , Bacterial Toxins/pharmacology , Meningitis, Bacterial/pathology , Animals , Blood-Brain Barrier , Meningitis, Bacterial/microbiology , Microscopy, Electron, Scanning , Rabbits
18.
Antimicrob Agents Chemother ; 60(8): 4878-85, 2016 08.
Article in English | MEDLINE | ID: mdl-27270276

ABSTRACT

Protective antigen (PA)-based vaccines are effective in preventing the development of fatal anthrax disease both in humans and in relevant animal models. The Bacillus anthracis toxins lethal toxin (lethal factor [LF] plus PA) and edema toxin (edema factor [EF] plus PA) are essential for the establishment of the infection, as inactivation of these toxins results in attenuation of the pathogen. Since the toxins reach high toxemia levels at the bacteremic stages of the disease, the CDC's recommendations include combining antibiotic treatment with antitoxin (anti-PA) immunotherapy. We demonstrate here that while treatment with a highly potent neutralizing monoclonal antibody was highly efficient as postexposure prophylaxis treatment, it failed to protect rabbits with any detectable bacteremia (≥10 CFU/ml). In addition, we show that while PA vaccination was effective against a subcutaneous spore challenge, it failed to protect rabbits against systemic challenges (intravenous injection of vegetative bacteria) with the wild-type Vollum strain or a toxin-deficient mutant. To test the possibility that additional proteins, which are secreted by the bacteria under pathogenicity-stimulating conditions in vitro, may contribute to the vaccine's potency, we immunized rabbits with a secreted protein fraction from a toxin-null mutant. The antiserum raised against the secreted fraction reacts with the bacteria in an immunofluorescence assay. Immunization with the secreted protein fraction did not protect the rabbits against a systemic challenge with the fully pathogenic bacteria. Full protection was obtained only by a combined vaccination with PA and the secreted protein fraction. Therefore, these results indicate that an effective antiserum treatment in advanced stages of anthrax must include toxin-neutralizing antibodies in combination with antibodies against bacterial cell targets.


Subject(s)
Anthrax/immunology , Antigens, Bacterial/immunology , Antitoxins/immunology , Bacillus anthracis/immunology , Bacterial Toxins/immunology , Animals , Anthrax/microbiology , Anthrax Vaccines/immunology , Antibodies, Bacterial/immunology , Female , Immune Sera/immunology , Rabbits , Spores, Bacterial/immunology , Vaccination/methods
19.
Antimicrob Agents Chemother ; 59(12): 7497-503, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26392505

ABSTRACT

Respiratory anthrax is a fatal disease in the absence of early treatment with antibiotics. Rabbits are highly susceptible to infection with Bacillus anthracis spores by intranasal instillation, succumbing within 2 to 4 days postinfection. This study aims to test the efficiency of antibiotic therapy to treat systemic anthrax in this relevant animal model. Delaying the initiation of antibiotic administration to more than 24 h postinfection resulted in animals with systemic anthrax in various degrees of bacteremia and toxemia. As the onset of symptoms in humans was reported to start on days 1 to 7 postexposure, delaying the initiation of treatment by 24 to 48 h (time frame for mass distribution of antibiotics) may result in sick populations. We evaluated the efficacy of antibiotic administration as a function of bacteremia levels at the time of treatment initiation. Here we compare the efficacy of treatment with clarithromycin, amoxicillin-clavulanic acid (Augmentin), imipenem, vancomycin, rifampin, and linezolid to the previously reported efficacy of doxycycline and ciprofloxacin. We demonstrate that treatment with amoxicillin-clavulanic acid, imipenem, vancomycin, and linezolid were as effective as doxycycline and ciprofloxacin, curing rabbits exhibiting bacteremia levels of up to 10(5) CFU/ml. Clarithromycin and rifampin were shown to be effective only as a postexposure prophylactic treatment but failed to treat the systemic (bacteremic) phase of anthrax. Furthermore, we evaluate the contribution of combined treatment of clindamycin and ciprofloxacin, which demonstrated improvement in efficacy compared to ciprofloxacin alone.


Subject(s)
Amoxicillin-Potassium Clavulanate Combination/pharmacology , Anthrax/drug therapy , Anti-Bacterial Agents/pharmacology , Bacillus anthracis/drug effects , Bacteremia/drug therapy , Ciprofloxacin/pharmacology , Doxycycline/pharmacology , Respiratory Tract Infections/drug therapy , Animals , Anthrax/microbiology , Anthrax/mortality , Anthrax/pathology , Bacillus anthracis/pathogenicity , Bacillus anthracis/physiology , Bacteremia/microbiology , Bacteremia/mortality , Bacteremia/pathology , Clarithromycin/pharmacology , Disease Models, Animal , Drug Combinations , Drug Synergism , Humans , Imipenem/pharmacology , Linezolid/pharmacology , Male , Microbial Sensitivity Tests , Rabbits , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/mortality , Respiratory Tract Infections/pathology , Rifampin/pharmacology , Spores, Bacterial/drug effects , Spores, Bacterial/pathogenicity , Spores, Bacterial/physiology , Survival Analysis , Vancomycin/pharmacology
20.
PLoS One ; 9(11): e112319, 2014.
Article in English | MEDLINE | ID: mdl-25375158

ABSTRACT

Infection of the central nervous system is considered a complication of Anthrax and was reported in humans and non-human primates. Previously we have reported that Bacillus anthracis possesses a toxin-independent virulent trait that, like the toxins, is regulated by the major virulence regulator, AtxA, in the presence of pXO2. This toxin-independent lethal trait is exhibited in rabbits and Guinea pigs following significant bacteremia and organ dissemination. Various findings, including meningitis seen in humans and primates, suggested that the CNS is a possible target for this AtxA-mediated activity. In order to penetrate into the brain tissue, the bacteria have to overcome the barriers isolating the CNS from the blood stream. Taking a systematic genetic approach, we compared intracranial (IC) inoculation and IV/SC inoculation for the outcome of the infection in rabbits/GP, respectively. The outstanding difference between the two models is exhibited by the encapsulated strain VollumΔpXO1, which is lethal when injected IC, but asymptomatic when inoculated IV/SC. The findings demonstrate that there is an apparent bottleneck in the ability of mutants to penetrate into the brain. Any mutant carrying either pXO1 or pXO2 will kill the host upon IC injection, but only those carrying AtxA either on pXO1 or in the chromosome in the background of pXO2 can penetrate into the brain following peripheral inoculation. The findings were corroborated by histological examination by H&E staining and immunofluorescence of rabbits' brains following IV and IC inoculations. These findings may have major implications on future research both on B. anthracis pathogenicity and on vaccine development.


Subject(s)
Anthrax , Antigens, Bacterial , Bacillus anthracis , Bacterial Proteins , Bacterial Toxins , Brain/metabolism , Trans-Activators , Animals , Anthrax/genetics , Anthrax/metabolism , Anthrax/pathology , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacillus anthracis/genetics , Bacillus anthracis/metabolism , Bacillus anthracis/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Brain/pathology , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , Guinea Pigs , Humans , Rabbits , Trans-Activators/genetics , Trans-Activators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...