Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2638, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528060

ABSTRACT

Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.


Subject(s)
Protein Biosynthesis , Ribosomes , Models, Molecular , Ribosomes/metabolism , Protein Folding , Protein Processing, Post-Translational
2.
Methods Mol Biol ; 2477: 179-193, 2022.
Article in English | MEDLINE | ID: mdl-35524118

ABSTRACT

Selective Ribosome Profiling (SeRP) is an emerging methodology, developed to capture cotranslational interactions in vivo. To date, SeRP is the only method that can directly capture, in near-codon resolution, ribosomes in action. Thus, SeRP allows us to study the mechanisms of protein synthesis and the network of protein-protein interactions that are formed already during synthesis. Here we report, in detail, the protocol for purification of ribosome- and Nascent-Chain associated factors, followed by isolation of ribosome-protected mRNA footprints, cDNA library generation and subsequent data analysis.


Subject(s)
Protein Biosynthesis , Ribosomes , Codon/metabolism , Gene Library , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism
3.
Article in English | MEDLINE | ID: mdl-29473018

ABSTRACT

The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.


Subject(s)
Candida albicans/physiology , Candidiasis/genetics , Candidiasis/microbiology , Endocytosis/genetics , Genes, Fungal , Morphogenesis/genetics , Phosphotransferases/metabolism , Candidiasis/metabolism , Endocytosis/immunology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Humans , Hyphae
4.
Sci Rep ; 7(1): 5692, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720834

ABSTRACT

Candida albicans is an opportunistic pathogen, typically found as a benign commensal yeast living on skin and mucosa, but poised to invade injured tissue to cause local infections. In debilitated and immunocompromised individuals, C. albicans may spread to cause life-threatening systemic infections. Upon contact with serum and at body temperature, C. albicans performs a regulated switch to filamentous morphology, characterized by emergence of a germ tube from the yeast cell followed by mold-like growth of branching hyphae. The ability to switch between growth morphologies is an important virulence factor of C. albicans. To identify compounds able to inhibit hyphal morphogenesis, we screened libraries of existing drugs for inhibition of the hyphal switch under stringent conditions. Several compounds that specifically inhibited hyphal morphogenesis were identified. Chemogenomic analysis suggested an interaction with the endocytic pathway, which was confirmed by direct measurement of fluid-phase endocytosis in the presence of these compounds. These results suggest that the activity of the endocytic pathway, which is known to be particularly important for hyphal growth, represents an effective target for hyphae-inhibiting drugs.


Subject(s)
Candida albicans/drug effects , Endocytosis/drug effects , Hyphae/drug effects , Animals , Biofilms/drug effects , Candida albicans/growth & development , Cattle , Drug Repositioning , Hyphae/growth & development , Morphogenesis/drug effects , Serum , Virulence Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...